This technical note describes how to parallelise TensorFlow models on IPU hardware.

If a deep learning network has too many layers and parameters to fit on one IPU, we need to divide it into pieces and distribute those pieces across multiple IPUs. This is called the model parallelism approach, and it enables us to train large models that exceed the memory capacity on a single IPU accelerator. Currently, we support two types of model parallelism, Sharding and Pipelining.
Sharding means partitioning a neural network, represented as a computational graph, across multiple IPUs, each of which computes a certain part of this graph.

For example, we plan to train a model on an IPU-POD\textsubscript{16} DA that has four IPU-M2000s and 16 IPUs. As shown in Fig. 2.1, the model we are training has 32 layers, which cannot fit in one IPU. Logically, we shard the model into 16 subgraphs across the IPUs, where each IPU computes two subgraphs. The direction of the arrows indicates the computation process of the entire model. IPUs communicate with each other through IPU-Links, with bidirectional bandwidth of 64 GB/s.

Fig. 2.1: Model sharding over 16 IPUs

Fig. 2.2 shows how we shard a neural network that is implemented in TensorFlow. Even though this model is evenly partitioned across two IPUs and each subgraph can only be visible to its assigned IPU, these two subgraphs are encapsulated within the same session instance and therefore can be trained in a distributed manner.
Shown on the left in Fig. 2.3 is the computational graph we would like to execute. Let’s say we assign a part of the graph (P0, P1, P2, P3) to the CPU, and partition the rest into two shards across two IPUs. The original computational graph (shown on the left) is transformed into the graph on the right. When the variables required for computation in TensorFlow are distributed on different types of TensorFlow devices (such as CPU and IPU), TensorFlow will add Send and Recv nodes to the graph. If we use sharding, copy nodes will be added between pairs of IPU shards to exchange variables. Copy nodes are implemented with IPU-Link technology.
2.1 Graph sharding

We provide an API for manual graph sharding, allowing you to arbitrarily designate sharding points of the graph to achieve maximum flexibility.

2.1.1 API

The manual model sharding API:

```python
tensorflow.python.ipu.scopes.ipu_shard(index)
```

Model sharding of a group of operations.

Parameters:
- **index**: IPU index indicates which IPU the operation group is partitioned onto.

2.1.2 Code example

A code example is shown below:

```python
import numpy as np
import tensorflow.compat.v1 as tf
from tensorflow.python import ipu
from tensorflow.python.ipu.scopes import ipu_scope

# Configure the IPU system
cfg = ipu.config.IPUConfig()
cfg.auto_select_ipus = NUM_IPUS
cfg.configure_ipu_system()

# Create the CPU section of the graph
with tf.device("cpu"):
    pa = tf.placeholder(np.float32, [2], name="a")
    pb = tf.placeholder(np.float32, [2], name="b")
    pc = tf.placeholder(np.float32, [2], name="c")

# Distribute the computation across four shards
def sharded_graph(pa, pb, pc):
    with ipu.scopes.ipu_shard(0):
        o1 = pa + pb
    with ipu.scopes.ipu_shard(1):
        o2 = pa + pc
    with ipu.scopes.ipu_shard(2):
        o3 = pb + pc
    with ipu.scopes.ipu_shard(3):
        out = o1 + o2 + o3
    return out

# Create the IPU section of the graph
with ipu_scope("/device:IPU:0"):
    result = ipu.ipu_compiler.compile(sharded_graph, [pa, pb, pc])

with tf.Session() as sess:
    # sharded run
    result = sess.run(result,
                      feed_dict={
                        pa: [1., 1.],
                        pb: [0., 1.],
                        pc: [1., 5.]
                      })
    print(result)
```
auto_select_ipus on line 12 selects four independent IPUs for this task. The selected IPUs are automatically chosen from the idle IPUs available to the system when the IPUConfig instance is used to configure the IPU system. sharded_graph() on lines 22-31 defines a simple graph that consists of some simple additions. Most importantly, the entire graph is partitioned into four shards by calling the ipu.scopes.ipu_shard() API four times.

2.2 Limitations of sharding

Sharding simply partitions the model and distributes it on multiple IPUs. Multiple shards execute in series and cannot fully utilise the computing resources of the IPUs. As shown in Fig. 2.4, the model is partitioned into four parts and executed on four IPUs in series. Only one IPU is working at any one time.

Sharding is a valuable method for use cases that need more control with replication, for example random forests, federated averaging and co-distillation. It can also be useful when developing/debugging a model, however for best performance pipelining should be used in most cases.
CHAPTER THREE

PIPELINING

3.1 Overview

The pipeline approach is similar to sharding. The entire model is partitioned into multiple computing stages, and the output of a stage is the input of the next stage. These stages are executed in parallel on multiple IPUs. Compared to using sharding technology alone, the pipeline approach can maximise the use of all IPUs involved in parallel model processing, which improves processor efficiency as well as throughput and latency performance.

When discussing the use of pipelining, the following nomenclature applies:

- **Mini-batch** A set of data samples to be processed in a single forward pass.
- **Batch** A set of mini-batches to be processed by the pipeline. The total sample count of which is sometimes referred to as the effective batch size.

Within this context, it suffices to consider a pipeline to be fed mini-batches until weight update is performed over the set of mini-batches (the batch).

Fig. 3.1 shows how to use pipelining for model parallelism (the dotted-line box indicates the point in the pipeline body where all IPUs are used to the maximum extent). The model consists of four layers and these are divided into four stages. Each stage is assigned to an IPU which computes a layer. When the first IPU receives a mini-batch of data B1 and the first stage is executed, the second IPU starts to execute the second stage and, at the same time, the first IPU receives the next mini-batch of data B2 and starts to execute the first stage, and so on. When the fourth mini-batch of data B4 is read, the parallelism of the four IPUs reaches 100%.

![Fig. 3.1: Pipeline time sequence during model inference](image)

The pipeline is relatively simple for inference, but more complicated for training based on backpropagation. For training, pipelining needs to adapt to include forward pass, back propagation and weight update.

Fig. 3.2 shows a single computational flow of forward pass and backpropagation, and then shows a complete pipeline with parallel overlapping mini-batches.
Each IPU performs not only the forward computation (Ai) of the corresponding layer, but also the gradient computation (AiGi). The dotted-line box shows the main body of the pipeline (it can be any depth, and larger depth can increase the size of the batch). Through the use of recomputation (see Section 3.5, Optimising the pipeline), the relevant IPU is used to the maximum extent to process forward activations, the previous activations are recomputed from the stored activation inputs, and the gradient updates are computed to save valuable on-chip memory.

Fig. 3.2: Pipeline time sequence during model training

The GCD mentioned in the image stands for “graph compile domain”, and is a set of IPUs which the Poplar graph compiler will compile binaries for. With a GCD of size 16, for example, we can generate a model-parallel graph that executes on 16 IPUs.

3.2 Pipeline operation

There are three phases to the pipelined execution:

- **Ramp up**: this is the period in which the pipeline is being filled with mini-batches until every pipeline stage (including forward and backward passes) is performing computation. The maximum utilisation is 50%.

- **Main execution**: the time when all the pipeline stages are performing computation. This is the period when maximum utilisation is made of all the IPUs.

- **Ramp down**: the time when the pipeline is being drained until each pipeline stage is no longer performing any computation. The maximum utilisation is again 50%.

After ramp down, the weight updates are performed.

Note: Pipelining must not be combined with sharding.
3.3 Pipelining API

The pipelining API allows you to describe what the forward, backward and weight update operations are. You define the forward stages. The backward stages and the weight updates are automatically generated. Check the pipelining interface in the TensorFlow API documentation.

3.3.1 Inputs and outputs

All tensors which are used in the pipeline that are not TensorFlow variables need to be explicitly passed as inputs to the pipeline. If the input passed in does not change value – for example, hyper-parameters – add them to the inputs argument.

If the input does change value with every execution of a pipeline stage – for example, mini-batches of data – then create an IPUInfeedQueue and pass it to the infeed_queue argument. The inputs list and the infeed_queue are passed as inputs to the first pipeline stage.

After the initial pipeline stage, all the outputs of a pipeline stage N are passed as inputs to the pipeline stage N+1. If an output of a stage N is used by a stage N+M where M > 1, then that output will be passed through the stages in between.

If the last computational stage has any outputs – for example, loss or the prediction – then you will need to create an IPUOutfeedQueue and pass it to the outfeed_queue argument. All the outputs from the final computational stage are passed to the outfeed automatically.

3.3.2 Device mapping

By default, the pipeline stages will be assigned to IPU devices in an order which should maximise the utilisation of IPU-Links between consecutive pipeline stages.

If your model is not sequential you might want to change the assignment, depending on the communication pattern in your model.

Any TensorFlow variables can only be used by pipeline stages which are on the same IPU. You can use the device mapping API to assign pipeline stages which use the same variable to be on the same IPU.

3.3.3 Pipeline scheduling

You can choose the method used for scheduling the operations in the pipeline. The scheduling methods have different trade-offs in terms of memory use, balancing computation between pipeline stages (and therefore the IPUs), and optimisations that can be applied. They will also have different pipeline depths and therefore different ramp-up and ramp-down times. The differences are most significant when training and you may need to experiment to find which method works best for your model.

In the Grouped schedule the forward and backward stages are grouped together on each IPU. All IPUs alternate between executing a forward pass and then a backward pass.

In the Interleaved schedule each pipeline stage executes a combination of forward and backward passes.

Finally, there is a sequential schedule. This is the same as sharding a model: only one mini-batch is ever “in-flight”. This may be useful when you cannot have a big mini-batch size but want to make use of other pipeline features, such as recomputation.
The grouped and interleaved schedules have different advantages and disadvantages:

Memory use:
- The grouped schedule executes $2N$ mini-batches at any given time.
- The interleaved schedule executes N mini-batches.
- This means that the interleaved schedule requires less memory for the storing the data to be transferred between forward and backward passes.

Execution time:
- The grouped schedule executes all the forward stages together and all the backward stages together.
- The interleaved schedule executes the forward stages and backward stages interleaved.
- Due to the synchronisation required between stages, and the fact that the forward stages tend to use fewer cycles than the backward stages, the grouped schedule is likely to be faster.

Ramp-up and ramp-down time:
• The grouped schedule executes 2N mini-batches in total to perform the ramp up and ramp down.
• The interleaved schedule executes N mini-batches in total to perform the ramp up and ramp down.

Other:
• Some inter-IPU optimisations are not possible with the interleaved schedule. For example, an optimisation which converts variables which are passed through multiple pipeline stages into FIFOs.

3.3.4 Keras API in TensorFlow 2

TensorFlow 2 for the IPU includes a port of Keras which features IPU-optimized replacements for the Keras Model and Sequential classes. There are also versions of these classes that support pipelining: PipelineModel and PipelineSequential. The API for these classes extends the API for the corresponding IPU-specific Keras classes with additional arguments that mostly match the arguments for the pipeline operator. For more details check the TensorFlow API documentation.

3.4 Code examples

3.4.1 Inference code examples

The following code shows an example usage of the pipeline API.

```python
from tensorflow.python.ipu import config
from tensorflow.python.ipu import ipu_compiler
from tensorflow.python.ipu import ipu_infeed_queue
from tensorflow.python.ipu import ipu_outfeed_queue
from tensorflow.python.ops import pipelining_ops
from tensorflow.python.data.ops.dataset_ops import Dataset
from tensorflow.python.ipu import scopes
from tensorflow.python import ipu
from tensorflow.python.ops import variables
from tensorflow.keras import layers
import numpy as np
import tensorflow.compat.v1 as tf

tf.disable_v2_behavior()

data_format = 'channels_last'
dataset = Dataset.from_tensor_slices(np.random.uniform(size=(2, 128, 128, 3)).astype(np.float32))
dataset = dataset.batch(batch_size=2, drop_remainder=True)
dataset = dataset.cache()
dataset = dataset.repeat()
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)

# Create the data queues from/to IPU.
infeed_queue = ipu_infeed_queue.IPUInfeedQueue(dataset, "infeed")
outfeed_queue = ipu_outfeed_queue.IPUOutfeedQueue("outfeed")

# Create a pipelined model which is split across two stages.
def stage1(partial):
    partial = layers.Conv2D(128, 1)(partial)
    return partial

def stage2(partial):
    partial = layers.Conv2D(128, 1)(partial)
    return partial

def my_net():
    pipeline_op = pipelining_ops.pipeline(
        computational_stages=[stage1, stage2],
        gradient_accumulation_count=16,
        repeat_count=2,
        inputs=[],
    )
```

(continues on next page)
The code first creates a dataset with `infeed_queue` and `outfeed_queue` which are for data input and output. The functions `stage1()` and `stage2()` define two computation stages. The most important definitions are in `my_net()` which defines the entire behaviour of the pipeline. Among them:

- `computational_stages` indicates that the stage list contains `stage1` and `stage2`
- `gradient_accumulation_count=16` means that each pipeline stage is executed 16 times before the weights are updated
- `repeat_count=2` means that the whole pipeline is executed twice

The program selects two IPUs to perform this task using `auto_select_ipus`, and each stage is automatically assigned to a single IPU.

The following example uses the Keras API in TensorFlow 2 to define a model equivalent to the one in the example above.
When defining a model for use with `PipelineModel`, the computational stages are defined by the layers under the `PipelineStage` scopes. In TensorFlow 2 to ensure that the model will be compiled for the IPUs we enclose it in an `IPUStrategy` scope. The program calls the `predict()` method to run inference on the model. The argument `steps_per_run` is analogous to `repeat_count` in the previous example, where we specify how many times to execute the whole pipeline on the devices, before giving control back to the host.

Following is the same model defined using the `PipelineSequential`.

```python
from tensorflow.python.data.ops.dataset_ops import Dataset
from tensorflow.python.ipu import utils
from tensorflow.python.keras import layers
from tensorflow.python.ipu import config
from tensorflow.python.ipu import keras
from tensorflow.python.ipu import ipu_strategy
import numpy as np
import tensorflow as tf

# default data_format is 'channels_last'
dataset = Dataset.from_tensor_slices(np.random.uniform(size=(2, 128, 128, 3)).astype(np.float32))
dataset = dataset.batch(batch_size=2, drop_remainder=True)
dataset = dataset.cache()
dataset = dataset.repeat()
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)

# Create a pipelined model which is split across two stages.
def my_model():
    return keras.PipelineSequential(
        [[layers.Conv2D(128, 1)],
         [layers.Conv2D(128, 1)]],
        gradient_accumulation_count=16)

cfg = config.IPUConfig()
cfg.auto_select_ipus = 2
cfg.configure_ipu_system()
utils.move_variable_initialization_to_cpu()

# Define the model under an IPU strategy scope
strategy = ipu_strategy.IPUStrategy()
with strategy.scope():
    model = my_model()
    output = model.predict(dataset, steps=2, steps_per_run=2)
```

The only difference from `PipelineModel` is how the model is defined: the `PipelineSequential` takes a list of list of layers, where each list of layers correspond to a computational stage.
3.4.2 Training code examples

This example creates a pipeline of four stages with gradient accumulation count of 8 and a repeat count of 2. Four IPUs are selected for computation.

The selection order is ZIGZAG, and recomputation is enabled. The loss function is cross-entropy, and the optimiser is `tf.train.GradientDescentOptimizer()`.

The source code is shown below:

```python
from tensorflow.python.ipu import config
from tensorflow.python.ipu import ipu_compiler
from tensorflow.python.ipu import ipu_infeed_queue
from tensorflow.python.ipu import ipu_outfeed_queue
from tensorflow.python.ipu.ops import pipelining_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.data.ops.dataset_ops import Dataset
from tensorflow.python.ipu import utils
from tensorflow.python.framework import ops
from tensorflow.python.ops import variables
from tensorflow.keras import layers
import numpy as np
import tensorflow.compat.v1 as tf

tf.disable_v2_behavior()

dataset = Dataset.from_tensor_slices((tf.random.uniform([2, 128, 128, 3], dtype=tf.float32),
                                       tf.random.uniform([2], maxval=10, dtype=tf.int32))
                                 )
dataset = dataset.batch(batch_size=2, drop_remainder=True)
dataset = dataset.shuffle(1000)
dataset = dataset.cache()
dataset = dataset.repeat()
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)

# Create the data queues from/to IPU.
infeed_queue = ipu_infeed_queue.IPUInfeedQueue(dataset, "infeed")
outfeed_queue = ipu_outfeed_queue.IPUOutfeedQueue("outfeed")

# Create a pipelined model which is split across four stages.
def stage1(partial, labels):
    with variable_scope.variable_scope("stage1", use_resource=True):
        with variable_scope.variable_scope("conv", use_resource=True):
            partial = layers.Conv2D(3, 1)(partial)
    return partial, labels

def stage2(partial, labels):
    with variable_scope.variable_scope("stage2", use_resource=True):
        with variable_scope.variable_scope("conv", use_resource=True):
            partial = layers.Conv2D(3, 1)(partial)
    return partial, labels

def stage3(partial, labels):
    with variable_scope.variable_scope("stage3", use_resource=True):
        with variable_scope.variable_scope("conv", use_resource=True):
            partial = layers.Conv2D(3, 1)(partial)
    return partial, labels

def stage4(partial, labels):
    with variable_scope.variable_scope("stage4", use_resource=True):
        with variable_scope.variable_scope("flatten", use_resource=True):
            partial = layers.Flatten()(partial)
        with variable_scope.variable_scope("dense", use_resource=True):
            logits = layers.Dense(10)(partial)
        with variable_scope.variable_scope("entropy", use_resource=True):
            cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits)
        with variable_scope.variable_scope("loss", use_resource=True):
            loss = tf.reduce_mean(cross_entropy)

    return loss
```

(continues on next page)
Model parallelism with TensorFlow: sharding and pipelining

```python
return loss

def optimizer_function(loss):
    optimizer = tf.train.GradientDescentOptimizer(0.01)
    return pipelining_ops.OptimizerFunctionOutput(optimizer, loss)

def my_net():
    pipeline_op = pipelining_ops.pipeline(
        computational_stages=[stage1, stage2, stage3, stage4],
        gradient_accumulation_count=8,
        repeat_count=2,
        inputs=[],
        infeed_queue=infeed_queue,
        outfeed_queue=outfeed_queue,
        optimizer_function=optimizer_function,
        name="Pipeline")
    return pipeline_op

with ops.device("/device:IPU:0"):
    r = ipu_compiler.compile(my_net, inputs=[])  
dequeue_op = outfeed_queue.dequeue()

cfg = config.IPUConfig()
    cfg.allow_recompute = True
    cfg.selection_order = config.SelectionOrder.ZIGZAG
    cfg.auto_select_ipus = 4
    cfg.configure_ipu_system()
    utils.move_variable_initialization_to_cpu()
    with tf.Session() as sess:
        sess.run(variables.global_variables_initializer())
        sess.run(infeed_queue.initializer)
        sess.run(r)
        losses = sess.run(dequeue_op)
```

Here, `tf.train.GradientDescentOptimizer()` automatically adds a stage to the pipeline for gradient computation, and a stage (`gradientDescent`) for weight update. Note that `gradient_accumulation_count=8` means that `gradientDescent` is computed once every eight mini-batches of data. And `repeat_count=2` means that the pipeline computes twice the `gradientDescent`; that is, the weight parameters are updated twice.

You can profile the program by running it with the following environment variable `POPLAR_ENGINE_OPTIONS='"autoReport.all":"true", "autoReport.directory":"/destination/path/"'`, and then open the generated report with PopVision Graph Analyser to get the execution information as shown in Fig. 3.5. Check also Section 4, PopVision™ Graph Analyser tool for further information.
We can see from this figure that:

- The pipeline is repeated twice.
- Each repetition of the pipeline computes eight mini-batches of data.
- Each mini-batch of data goes through the phases of forward pass and gradient computation (with optional recomputation).
- Four stages are executed in parallel on four IPUs.
- After eight gradient computations, a gradient descent will be executed, that is, the weight will be updated once for the batch.

As for inference, we show equivalent programs that use pipelining for training, using TensorFlow 2 and the PipelineModel and PipelineSequential classes.

```python
from tensorflow.python.data.ops.dataset_ops import Dataset
from tensorflow.python.ipu import utils
from tensorflow.keras import layers
from tensorflow.keras import optimizers
from tensorflow.python.ipu import config
from tensorflow.python.ipu import keras
import numpy as np
import tensorflow as tf

# default data_format is 'channels_last'

dataset = Dataset.from_tensor_slices((
    tf.random.uniform([2, 128, 128, 3], dtype=tf.float32),
    tf.random.uniform([2], maxval=10, dtype=tf.int32))
)
dataset = dataset.batch(batch_size=2, drop_remainder=True)
dataset = dataset.shuffle(1000)
dataset = dataset.cache()
dataset = dataset.repeat()
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)

# Create a pipelined model which is split across four stages.
def my_model():
    input_layer = layers.Input(shape=(128, 128, 3), dtype=tf.float32, batch_size=2)
```

(continues on next page)
with keras.PipelineStage(0):
 partial = layers.Conv2D(3, 1)(input_layer)

with keras.PipelineStage(1):
 partial = layers.Conv2D(3, 1)(partial)

with keras.PipelineStage(2):
 partial = layers.Conv2D(3, 1)(partial)

with keras.PipelineStage(3):
 partial = layers.Flatten()(partial)
 logits = layers.Dense(10)(partial)

return keras.PipelineModel(input_layer,
 logits,
 gradient_accumulation_count=8,
)

cfg = config.IPUConfig()
cfg.allow_recompute = True
cfg.selection_order = config.SelectionOrder.ZIGZAG
cfg.auto_select_ipus = 4
cfg.configure_ipu_system()
utils.move_variable_initialization_to_cpu()

Define the model under an IPU strategy scope
strategy = ipu_strategy.IPUStrategy()
with strategy.scope():
 model = my_model()
 model.compile(loss=sparse_categorical_crossentropy, optimizer=optimizers.SGD(0.01))
model.fit(dataset, steps_per_epoch=2, steps_per_run=2)

And finally the PipelineSequential version, which differs from the above only in the definition of the model, as in the inference code examples.

from tensorflow.python.data.ops.dataset_ops import Dataset
from tensorflow.python.ipu import utils
from tensorflow.keras import layers
from tensorflow.keras import optimizers
from tensorflow.python.ipu import config
from tensorflow.python.ipu import keras
from tensorflow.python.ipu import ipu_strategy
import numpy as np
import tensorflow as tf

default data_format is 'channels_last'
dataset = Dataset.from_tensor_slices((
 tf.random.uniform([2, 128, 128, 3], dtype=tf.float32),
 tf.random.uniform([2], maxval=10, dtype=tf.int32)
)

dataset = dataset.batch(batch_size=2, drop_remainder=True)
dataset = dataset.shuffle(1000)
dataset = dataset.cache()
dataset = dataset.repeat()
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)

def my_model():
 return keras.PipelineSequential(
 [[layers.Conv2D(3, 1)],
 [layers.Conv2D(3, 1)],
 [layers.Conv2D(3, 1)],
 [layers.Flatten(), layers.Dense(10)]]),
 gradient_accumulation_count=8)

cfg = config.IPUConfig()
cfg.allow_recompute = True
cfg.selection_order = config.SelectionOrder.ZIGZAG
cfg.auto_select_ipus = 4
cfg.configure_ipu_system()
utils.move_variable_initialization_to_cpu()

Define the model under an IPU strategy scope
strategy = ipu_strategy.IPUStrategy()
with strategy.scope():
 model = my_model()
 model.compile(loss='sparse_categorical_crossentropy', optimizer=optimizers.SGD(0.01))
model.fit(dataset, steps_per_epoch=2, steps_per_run=2)

3.5 Optimising the pipeline

3.5.1 Recomputation

The Poplar SDK makes more efficient use of the valuable In-Processor-Memory by saving selected activation inputs, optimising on memory savings vs TFLOP expenditure with recomputation. The two figures below demonstrate this, showing how the subset of activation inputs that are saved can be used to recompute all the necessary activation history for the backward pass calculation of the weight updates, thus saving on memory usage. To enable recomputation, use the allow_recompute attribute of an instance of the IPUConfig class when configuring the device.

![Fig. 3.6: Normal computation flow](image)
3.5.2 Variable offloading

When using pipelining to train a model, it is possible to offload certain variables into Streaming Memory. This feature can allow savings of In-Processor-Memory memory, at the cost of time spent communicating with the host when the offloaded variables are needed on the device. The API supports offloading of the weight update variables and activations.

The weight update variables are any tf.Variable only accessed and modified during the weight update of the pipeline. An example is the accumulator variable of the tf.MomentumOptimizer. This means that these variables do not need to be stored in the device memory during the forward and backward propagation of the model, so when offload_weight_update_variables is enabled they are streamed onto the device during the weight update and then streamed back to Streaming Memory after they have been updated.

When offload_activations is enabled, all the activations for the mini-batches which are not being executed by the pipeline stages at any given time are stored in the Streaming Memory. So in an analogous way as described above, when an activation is needed for computation it is streamed onto the device, and then streamed back to the Streaming Memory after it has been used.

3.5.3 Device selection order

Use the API to make sure the pipeline stage mapping to devices utilises the IPU-Links as much as possible.

3.5.4 Data parallelism

Pipelining supports replicated graphs. When using the pipeline operator, use the tensorflow.python.ipu.optimizers.CrossReplicaOptimizer in the optimiser function. When using the IPU Keras PipelineModel and PipelineSequential from within an IPUStrategy, replication is handled automatically whenever the model is placed on a multi-IPU device and the CrossReplicaOptimizer must not be used.

If the model you are working on is defined as using a mini-batch size B and the gradient accumulation count is G and the replication factor is R, this results in an effective batch size of B x G x R.

Note that the all-reduce collectives for the gradients are only performed during the weight update.
3.5.5 Increase the gradient accumulation count

The bigger the gradient accumulation count:

- The smaller the proportion of time spent during a weight update.
- The smaller the proportion of time spent during ramp up and ramp down.

An increase in gradient accumulation count yields these reductions by performing the forward and backward passes on a greater number of mini-batches prior to the updating of weights and/or parameters, resulting in a greater effective batch size. The computed gradients for each mini-batch are aggregated such that the weight update is performed with the larger, aggregated batch.

In Fig. 3.8, the processing of four mini-batches is shown without gradient accumulation. It can be seen that following the forward and backward passes of each mini-batch is a weight update stage.

![Diagram](Fig. 3.8: Not using gradient accumulation)

However, when processing the four-mini batches of Fig. 3.8 with a gradient accumulation count of four, it can be seen in Fig. 3.9 that only a single weight update stage is performed. This is due to the aggregation of the gradients computed in the backward pass for each mini-batch.

![Diagram](Fig. 3.9: Using a gradient accumulation count of 4)
As weight updates are performed following the ramp down phase of pipeline execution, the use of a higher gradient accumulation count will also reduce the number of ramp up/ramp down cycles between batches as the effective batch size will be larger, as previously outlined. As ramp up and ramp down fill and clear the pipeline, reducing occurrences of ramp up and ramp down maximises time spent on compute. A lower gradient accumulation count will incur more ramp up/ramp down cycles, causing more time to be spent filling and clearing the pipeline.

3.5.6 Profiling

When your model is executing correctly, you can try moving layers around, or if the model doesn't fit in one or more IPUs you can try changing the available memory proportion for temporary memory usage (for more information, see the technical note on this option).

- Move layers towards the final computation stage to reduce the amount of recomputation
- Adjust availableMemoryProportion. For example:

```python
# Set "availableMemoryProportion" flag to "0.5"
cfg = ipu.config.IPUConfig()
cfg.convolutions.poplar_options["availableMemoryProportion"] = "0.5"
cfg.matmuls.poplar_options["availableMemoryProportion"] = "0.5"
cfg.configure_ipu_system()
```

- More fine-grained control of the available memory proportion with the following options:
 - `forward_propagation_stages_poplar_options`: If provided, a list of length equal to the number of computational stages. Each element is a `PipelineStageOptions` object which allows for fine grain control of the Poplar options for a given forward propagation computational stage.
 - `backward_propagation_stages_poplar_options`: If provided, a list of length equal to the number of computational stages. Each element is a `PipelineStageOptions` object which allows for fine grained control of the Poplar options for a given backward propagation computational stage.
 - `weight_update_poplar_options`: If provided, a `PipelineStageOptions` object which allows for fine grained control of the Poplar options for the weight update stage.

These can be useful in certain situations, for example if one stage is almost out of memory then the available memory proportion can be lowered there but not for the rest of the model.

- Make sure that the `tf.Dataset` passed to the pipeline is not the bottleneck. See the Dataset benchmarking section in Targeting the IPU from TensorFlow for more information.
- Experiment with Poplar engine options. For example:

```python
POPULAR_ENGINE_OPTIONS="{"opt.enableSwSyncs": "true"}"
```
You can use the PopVision Graph Analyser tool to debug IPU programs and generate reports on compilation and execution of the program. This tool can be downloaded from the Graphcore customer support portal: https://downloads.graphcore.ai/. There is a built-in help system within the tool for any questions you might have about producing and analysing reports.

Fig. 4.1 shows a PopVision Graph Analyser report generated by a pipeline example of forward inference computation.

Fig. 4.1: PopVision Graph Analyser tool output

For more information see the PopVision User Guide.
CHAPTER
FIVE

TRADEMARKS & COPYRIGHT

Graphcore® and Poplar® are registered trademarks of Graphcore Ltd.
AI-Float™, Colossus™, Exchange Memory™, Graphcloud™, In-Processor-Memory™, IPU-Core™, IPU-Exchange™,
IPU-Fabric™, IPU-Link™, IPU-M2000™, IPU-Machine™, IPU-POD™, IPU-Tile™, PopART™, PopLibs™, PopVision™,
PopTorch™, Streaming Memory™ and Virtual-IPU™ are trademarks of Graphcore Ltd.

All other trademarks are the property of their respective owners.

Copyright © 2016-2021 Graphcore Ltd. All rights reserved.