4. PopLibs API reference

The PopLibs libraries provide application-level functions that can be used in Poplar programs for the IPU.

Library

Depends on

Description

poplin

popops, poputil

Linear algebra functions (matrix multiplications, convolutions)

popnn

poplin, poputil

Functions used in neural networks (for example, non-linearities, pooling and loss functions)

popops

poputil

Operations on tensors in control programs (elementwise functions and reductions)

poprand

poputil

Functions for populating tensors with random numbers

popsparse

Functions for operating on sparse tensors

poputil

General utility functions for building graphs

4.1. Utility functions (poputil)

General utility functions for building graphs.

4.1.1. poputil/Broadcast.hpp

namespace poputil

Functions

void expandToMatchRanks(poplar::Tensor &a, poplar::Tensor &b)

Insert singleton dimensions into either of two tensors such that their ranks match following numpy style expansion rules.

The tensor with the lower rank has singleton dimensions inserted as outer-most dimensions.

Parameters
  • a: First tensor to match.

  • b: Second tensor to match.

void broadcastToMatch(poplar::Tensor &a, const std::vector<std::size_t> &shape)

Match dimensions of a tensor to a shape by broadcasting using numpy style broadcast rules:

1) If the rank of the tensor is expand to the dimensions to the left with dimensions of size 1 to match the rank of the required shape.

2) For each dimension, the size of the dimension in the tensors must be the same as the required shape or must have size 1. In the case where it is of size one the tensor is broadcast in that dimension to match the shape. If neither of these conditions hold then an exception is thrown.

Parameters
  • a: The tensor to broadcast to match the shape. This will be updated in place with broadcast dimensions.

  • shape: The shape to match.

void broadcastToMatch(poplar::Tensor &a, poplar::Tensor &b)

Match dimensions of two tensors by broadcasting using numpy style broadcast rules:

1) If the rank of one tensor is less than the other then extend the dimensions to the left with dimensions of size 1.

2) For each dimension, the size of the dimension in both tensors must be the same or one of them must have size 1. In the case where one is of size one the tensor is broadcast in that dimension to match the other. If neither of these conditions hold then an exception is thrown.

Parameters
  • a: First tensor to match. This will be updated in place with broadcast dimensions.

  • b: Second tensor to match. This will be updated in place with broadcast dimensions.

void broadcastToMatch(poplar::Tensor &a, poplar::Tensor &b, poplar::Tensor &c)

Match dimensions of three tensors by broadcasting using numpy style broadcast rules:

1) If the rank of one tensor is less than the other then extend the dimensions to the left with dimensions of size 1.

2) For each dimension, the size of the dimension in both tensors must be the same or one of them must have size 1. In the case where one is of size one the tensor is broadcast in that dimension to match the other. If neither of these conditions hold then an exception is thrown.

Parameters
  • a: First tensor to match. This will be updated in place with broadcast dimensions.

  • b: Second tensor to match. This will be updated in place with broadcast dimensions.

  • c: Third tensor to match. This will be updated in place with broadcast dimensions.

bool canBroadcastToMatch(const poplar::Tensor &a, const poplar::Tensor &b)

Test if the given tensors can be broadcast to match one another using the rules for broadcastToMatch.

Return

True if the two tensors may be broadcast to match one another and false if they do not match following the broadcastToMatch broadcast rules.

Parameters
  • a: First tensor to match.

  • b: Second tensor to match.

4.1.2. poputil/GraphFunction.hpp

namespace poputil
namespace graphfn

Typedefs

using Signature = std::vector<ArgSig>

Enums

enum ArgType

Values:

enumerator InputArg
enumerator OutputArg
enumerator InOutArg
enumerator CreatedArg

Functions

ArgSig input(poplar::Tensor similar, std::string debugName = "")
ArgSig inout(poplar::Tensor similar, std::string debugName = "")
ArgSig output(poplar::Tensor similar, std::string debugName = "")
ArgSig created(std::string debugName = "")
struct ArgSig

Public Functions

ArgSig(ArgType type, poplar::Tensor tensor, std::string debugName)

Public Members

ArgType type
poplar::Tensor similarTensor
std::string debugName
class ProgramFunction

Public Functions

ProgramFunction(poplar::Graph &graph, Signature sig, std::function<poplar::program::Program(std::vector<poplar::Tensor>&)> f)
poplar::program::Program operator()(std::vector<poplar::Tensor> &args)

Private Members

VoidFunction voidFunc
class TensorFunction

Public Functions

TensorFunction(poplar::Graph &graph, Signature sig, std::function<poplar::Tensor(std::vector<poplar::Tensor>&, poplar::program::Sequence&)> f)
poplar::Tensor operator()(std::vector<poplar::Tensor> &args, poplar::program::Sequence &prog)

Private Members

VoidFunction voidFunc
class VoidFunction

Public Functions

VoidFunction(poplar::Graph &graph, Signature sig, std::function<void(std::vector<poplar::Tensor>&, poplar::program::Sequence&)> f)
void operator()(std::vector<poplar::Tensor> &args, poplar::program::Sequence &seq)

Private Members

poplar::Graph &graph
Signature sig
poplar::program::Sequence prog
std::vector<poplar::Tensor> params

4.1.3. poputil/Loop.hpp

namespace poputil

Typedefs

using CountedLoopBodyType = std::function<poplar::program::Program(const poplar::Tensor&)>

Functions

poplar::program::Sequence countedLoop(poplar::Graph &graph, std::size_t begin, std::size_t end, size_t step, const std::string &debugPrefix, const CountedLoopBodyType &body)
poplar::program::Sequence countedLoop(poplar::Graph &graph, std::size_t count, const std::string &debugPrefix, const CountedLoopBodyType &body)

4.1.4. poputil/TileMapping.hpp

namespace poputil

Functions

std::vector<std::vector<poplar::Interval>> calcLinearTileMapping(const poplar::Graph &graph, std::vector<std::size_t> shape, unsigned minElementsPerTile, unsigned grainSize)

Calculate a tile mapping that spreads the tensor evenly over the tiles in a linear manner (i.e.

with the indices of the flattened tensor mapped across from low -> high tile numbers).

std::vector<std::vector<poplar::Interval>> calcLinearTileMapping(const poplar::Graph &graph, const poplar::Tensor &t)

Calculate a tile mapping that spreads the tensor evenly over the tiles in a linear manner (i.e.

with the indices of the flattened tensor mapped across from low -> high tile numbers).

In this case the elements are split so as not to split vectors of elements for the devices natural vector widths and to try and keep at least 128 bytes of data on each tile to avoid high exchange costs.

void mapTensorLinearly(poplar::Graph &graph, const poplar::Tensor &t, unsigned minElementsPerTile, unsigned grainSize)
void mapTensorLinearly(poplar::Graph &graph, const poplar::Tensor &t)
unsigned getTileImbalance(const poplar::Graph::TileToTensorMapping &mapping, unsigned minElementsPerTile = 0, unsigned grainSize = 1)

Determine how unbalanced a tensor is mapped over tiles.

Return

The maximum number of elements over expected on any tile.

Parameters
  • mapping: The tile mapping of the tensor

  • minElementsPerTile: The expected minimum number of elements per tile.

  • grainSize: The expected “grain size” i.e. atomic grains used to split of elements over tiles

unsigned getTileImbalance(const poplar::Graph &graph, const poplar::Tensor &t, unsigned minElementsPerTile = 0, unsigned grainSize = 1)

Determine how unbalanced a tensor is mapped over tiles.

Return

The maximum number of elements over expected on any tile.

Parameters
  • graph: The graph.

  • t: The tensor to be inspected.

  • minElementsPerTile: The expected minimum number of elements per tile.

  • grainSize: The expected “grain size” i.e. atomic grains used to split of elements over tiles

void mapOutputForElementWiseOp(poplar::Graph &graph, const std::vector<poplar::Tensor> &inputs, const poplar::Tensor &output, unsigned grainSize = 1, unsigned minGrainsPerTile = 0)

Update a tensor’s tile mapping such that when it is used as the output of an element-wise operation (operation with no dependency between more than one element of the output and any given element of any input tensor).

Use the resulting tensor to map element-wise operations to tiles to produce an operation that is computationally balanced across tiles and which minimises exchange.

Parameters
  • graph: A graph which the given inputs/output belong to.

  • inputs: List of input tensors for the operation.

  • output: Output tensor for the operation.

  • grainSize: Grain-size for elements mapped to each tile.

  • minGrainsPerTile: Minimum no. of grains mapped to a tile.

poplar::Tensor cloneToIpu(poplar::Graph &graph, const poplar::Tensor &t, unsigned dstIPU, poplar::StringRef name = "", poplar::TensorCloneMethod method = poplar::TensorCloneMethod::PRESERVE_ORDER_UNLESS_ALIASES)

Create a clone of the specified tensor.

Elements of the cloned tensor are mapped to the specified IPU such the index of the tile an element is mapped to within an IPU is preserved.

Return

The cloned tensor.

Parameters
  • graph: The graph representing the entire multi-IPU device.

  • t: The tensor to clone.

  • dstIPU: The index of the IPU to clone the tensor onto.

  • name: A debug name to give to any new tensors allocated in the graph during the clone. If this is empty then the debug names will be derived from existing tensor debug names.

  • method: The method to use for the cloning.

poplar::Tensor copyToIpu(poplar::Graph &masterGraph, const poplar::Tensor &t, poplar::program::Sequence &prog, unsigned dstIPU, poplar::StringRef name = "", poplar::TensorCloneMethod method = poplar::TensorCloneMethod::PRESERVE_ORDER_UNLESS_ALIASES)

Move a tensor from one IPU to another by duplicating it, mapping the clone onto another IPU, and copying the original to the new one.

Return

The new tensor on the specified IPU.

Parameters
  • masterGraph: The graph representing the entire multi-IPU device.

  • t: The tensor to move from one IPU to another.

  • prog: A program sequence to which the Copy will be added.

  • dstIPU: The index of the IPU onto which the Tensor will be moved.

  • name: A debug name to give to the tensor created on dstIPU. If this is empty then the debug names will be derived from existing tensor debug names.

  • method: The method to use for cloning of the tensor on the destination IPU.

poplar::Tensor createIpuCopy(poplar::Graph &graph, const poplar::Tensor &t, unsigned dstIpu, poplar::Tensor &copySrc, poplar::Tensor &copyDst, poplar::StringRef name = "", poplar::TensorCloneMethod method = poplar::TensorCloneMethod::PRESERVE_ORDER_AND_ALIASES)

Move a tensor from one IPU to another by duplicating it, mapping the clone onto another IPU, and provide the src/dsts tensors of an inter-IPU copy (but to not add that copy to a program at this point).

Return

The new tensor on the specified IPU.

Parameters
  • masterGraph: The graph representing the entire multi-IPU device.

  • t: The tensor to move from one IPU to another.

  • dstIPU: The index of the IPU onto which the Tensor will be moved.

  • copySrc: A tensor that can be used as the source to do the copy

  • copyDst: A tensor that can be used as the dest to do the copy

  • name: A debug name to give to the tensor created on dstIPU. If this is empty then the debug names will be derived from existing tensor debug names.

  • method: The method to use for cloning of the tensor on the destination IPU.

bool dimIsSplitOverTiles(const poplar::Graph &graph, const poplar::Tensor &t, unsigned dimension)

Check if the tile mapping of the given tensor is or isn’t such that the given dimension is split over more than 1 Tile.

Return

true if any slice of the given dimension is spread over more than one Tile.

Parameters
  • graph: The graph to introspect.

  • t: The tensor to introspect.

  • dimension: The dimension to check.

bool dimIsSplitOverIPUs(const poplar::Graph &graph, const poplar::Tensor &t, unsigned dimension)

Check if the tile mapping of the given tensor is or isn’t such that the given dimension is split over more than 1 IPU.

Return

true if any slice of the given dimension is spread over more than one IPU.

Parameters
  • graph: The graph to introspect.

  • t: The tensor to introspect.

  • dimension: The dimension to check.

poplar::Tensor createBroadcastOperand(poplar::Graph &graph, const poplar::Tensor &fullTensor, const poplar::Type &type, unsigned dim, bool ditherMapping = false, const std::string &name = "")
class TensorUseTracker
#include <TileMapping.hpp>

Class that tracks the usage of data on different tiles.

If data is broadcast to many tiles, it is sometimes efficient to map the data to be spread evenly amongst the tiles that use it.

This class can collect uses of data and then calculate such a tile mapping.

Public Types

enum MappingMethod

Values:

enumerator OptimizeHaloRegions
enumerator ConstrainMappingToUsedTiles
enumerator None

Public Functions

TensorUseTracker(unsigned numTiles)
TensorUseTracker(const TensorUseTracker &other)
TensorUseTracker(TensorUseTracker &&other)
TensorUseTracker &operator=(const TensorUseTracker &other)
TensorUseTracker &operator=(TensorUseTracker &&other)
~TensorUseTracker()
void add(const poplar::Graph &graph, unsigned tile, const poplar::Tensor &t)

Add a data use case.

Parameters
  • graph: The Poplar graph

  • tile: The tile that the use occurs on.

  • t: The tensor representing the data being used.

void add(TensorUseTracker other)

Add data use cases from another tracker.

Parameters

void resolve(const poplar::Graph &graph, unsigned grainSize, unsigned minElementsPerTile, bool extendPartialUsage = false, TensorUseTracker::MappingMethod mappingMethod = TensorUseTracker::MappingMethod::None)

Resolve data uses for mapping.

Data used on multiple tiles will have their uses spread across those tiles.

Parameters
  • grainSize: The number of elements that cannot be split amongst tiles.

  • minElementsPerTile: The minimum number of elements that must be mapped to a tile.

  • extendPartialUsage: When set, partial uses of tensors will be extended to cover the entire tensor, based on the usage of neighbouring regions.

  • mappingMethod: Method used for mapping elements.

void mapTensorsByUse(poplar::Graph &graph, unsigned grainSize, unsigned minElementsPerTile, bool extendPartialUsage = false, TensorUseTracker::MappingMethod mappingMethod = TensorUseTracker::MappingMethod::None)

Map data according to use.

This function will set the tile mapping of variable regions based on tracked data uses. Variable regions with uses on multiple tiles will have their elements spread across those tiles.

Parameters
  • graph: The Poplar graph

  • grainSize: The number of elements that cannot be split amongst tiles.

  • minElementsPerTile: The minimum number of elements that must be mapped to a tile.

  • extendPartialUsage: When set, partial uses of tensors will be extended to cover the entire tensor, based on the usage of neighbouring regions before mapping.

  • mappingMethod: Method used for mapping eements.

bool empty() const

Have any use cases been registered.

Return

True if no data use cases, false otherwise

Private Members

std::unique_ptr<TensorUseTrackerState> st

4.1.5. poputil/Util.hpp

namespace poputil

Functions

void mergeAdjacentRegions(std::vector<poplar::Interval> &regions)
void mergeAdjacentRegions(std::vector<std::vector<poplar::Interval>> &mapping)
std::vector<std::vector<poplar::Interval>> splitRegions(const std::vector<poplar::Interval> &regions, unsigned grainSize, unsigned maxPartitions, unsigned minElementsPerPartition = 0, unsigned maxElementsPerPartition = UINT_MAX, unsigned maxElementsPerRegion = UINT_MAX)

Given a set of contiguous regions, partition these regions trying to balance the number of elements in each partition, respecting the specified grain.

At most maxPartitions partitions are created. Regions may be split to achieve a better balance.

std::vector<std::vector<poplar::Interval>> splitRegionsBetweenWorkers(const poplar::Target &target, const std::vector<poplar::Interval> &regions, unsigned grainSize, unsigned minElementsPerPartition = 0, unsigned maxElementsPerPartition = UINT_MAX, unsigned maxElementsPerRegion = UINT_MAX)

Given a set of contiguous regions per tile, partition these regions between workers on that tile, respecting the specified grain size.

Regions may be split to balance the work across workers.

std::vector<std::vector<std::vector<poplar::Interval>>> splitRegions(const std::vector<std::vector<poplar::Interval>> &regions, unsigned grainSize, unsigned maxPartitions, unsigned minElementsPerPartition = 0, unsigned maxElementsPerPartition = UINT_MAX, unsigned maxElementsPerRegion = UINT_MAX)
std::vector<std::vector<std::vector<poplar::Interval>>> splitRegionsBetweenWorkers(const poplar::Target &target, const std::vector<std::vector<poplar::Interval>> &regions, unsigned grainSize, unsigned minElementsPerPartition = 0, unsigned maxElementsPerPartition = UINT_MAX, unsigned maxElementsPerRegion = UINT_MAX)

Given a set of sequences of regions per tile, partition these sequences between workers on that tile, respecting the specified grain size.

Regions may be split to balance the work across workers.

template<class T>
std::vector<T> unflattenIndex(const std::vector<T> &shape, std::size_t index)

Given an index into a flattened tensor returns the indices into the dimensions of the original tensor.

template<class T>
std::size_t flattenIndex(const std::vector<T> &shape, const std::vector<T> &indices)

Given an list of indices into a tensor return the corresponding index in a flattened version of the tensor.

std::size_t intervalSequenceNumElements(const std::vector<std::vector<poplar::Interval>> &seq)

Total number of elements in the interval sequence.

poplar::Tensor duplicate(poplar::Graph &graph, const poplar::Tensor &in, poplar::program::Sequence &p, const std::string &name = "", poplar::TensorCloneMethod method = poplar::TensorCloneMethod::PRESERVE_ORDER_UNLESS_ALIASES)

Copy a tensor’s data to a new tensor.

The duplicated tensor has the same tile mapping as the original tensor.

poplar::Tensor cloneN(poplar::Graph &graph, const poplar::Tensor &t, unsigned N, poplar::StringRef name = "", poplar::TensorCloneMethod method = poplar::TensorCloneMethod::PRESERVE_ORDER_UNLESS_ALIASES)

Clone a tensor N times.

Given a tensor of shape [D1, D2, … Dn], this function will create a new tensor of shape [N, D1, D2, …, Dn] where each of the N sub-tensors is a clone of the original tensor (i.e. has the same layout).

Parameters
  • graph: The Poplar graph

  • t: The tensor to clone

  • N: The replication factor to clone with

  • name: The name for the new variables created

  • method: The tensor cloning method (see Graph::clone)

std::vector<int> balancedPartition(int rangeUpperBound, int splitCount)

Utility function to split a range [0, rangeUpperBound] into splitCount slices as evenly as possible.

If splitCount does not divide rangeUpperBound evenly then output slices are assigned more units in round-robin.

bool checkAccuracyWhenCast(const poplar::Target &target, double input, poplar::Type inputType, poplar::Type outputType, double tolerance)

4.1.6. poputil/VarStructure.hpp

namespace poputil

Typedefs

using GroupingInfo = std::pair<unsigned, unsigned>

Returns a list with the innermost grouped dimension first moving outwards, with groupings for each.

The same dimension may appear more than once. This uses detectInnermostGrouping iteratively.

Functions

unsigned detectInnermostGrouping(const poplar::Graph &graph, const poplar::Tensor &t)

If there is one, detect if the given tensor has a grouping in its innermost dimension.

std::vector<GroupingInfo> detectDimGroupings(const poplar::Graph &graph, const poplar::Tensor &t)
poplar::Tensor createPartitionableTensor(poplar::Graph &graph, const poplar::Type &type, const std::vector<std::size_t> &shape, const std::vector<std::size_t> &nPartitions, const std::string &debugName = "")

Create a tensor with the given shape such that when it is partitioned into slices according to the given number of partitions in each dimension, each slice is a single contiguous region.

This partitions such that the maximum number of elements in each partition of a dimension is minimised as well as the number of partitions. i.e. if a dimension has n elements, and the number of partitions in that dimension is d then:

a * ceil(n/d) + 1 * (nd) = n

There will be a partitions with ceil(n/d) elements followed by b partitions with floor(n/d) elements and possibly some number of partitions with 0 elements.

The returned tensor has no tile mapping set.

Return

A tensor with the given shape where each partition is contiguous.

Parameters
  • graph: The graph to add the variable to.

  • type: The type of the elements in the returned tensor.

  • shape: The shape of the returned tensor.

  • nPartitions: How many partitions the given shape will be partitioned into in each dimension.

  • debugName: The debug name associated with the returned tensor.

void iterateTensorPartitions(const poplar::Tensor &t, const std::vector<std::size_t> &nPartitions, const std::function<void(const std::vector<std::size_t> &i, const poplar::Tensor &s)> &f)

Iterate the partitions of a tensor.

Partitioning follows the same definition as described above in addVariableWithSplits.

Parameters
  • t: The tensor to iterate.

  • nPartitions: How many partitions the given tensor is partitioned into in each dimension.

  • f: A function taking the indices of the partition in the range [0,splits[d]) in each dimension of the tensor as well as the slice of the tensor corresponding to that partition.

4.1.7. poputil/VertexTemplates.hpp

template<>
struct poputil::VertexTemplateToString<poplar::StringRef>

Public Static Functions

std::string to_string(const poplar::StringRef &ref)
namespace poputil

Functions

std::string templateVertexParams(bool first)
template<typename ...Args>
std::string templateVertexParams(bool first, const std::string &val, Args&&... args)
template<typename ...Args>
std::string templateVertexParams(bool first, const char *val, Args&&... args)
template<typename ...Args>
std::string templateVertexParams(bool first, const poplar::Type &type, Args&&... args)
template<typename ...Args>
std::string templateVertexParams(bool first, bool b, Args&&... args)
template<typename T, typename ...Args>
std::string templateVertexParams(bool first, const T &val, Args&&... args)
template<typename ...Args>
std::string templateVertex(const std::string &name, Args&&... args)
template<typename T>
struct VertexTemplateToString

Public Static Functions

std::string to_string(const T &x)
template<> StringRef >

Public Static Functions

std::string to_string(const poplar::StringRef &ref)

4.2. Tensor operations (popops)

Functions for building operations on tensors in control programs (such as element-wise functions and reductions).

4.2.1. popops/AllTrue.hpp

namespace popops

Common functions, such as elementwise and reductions.

Functions

poplar::Tensor allTrue(poplar::Graph &graph, poplar::Tensor A, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Given a boolean tensor, compute the logical AND of all its elements.

A new variable is created to store the result.

Return

A variable that holds the result of the operation

Parameters
  • graph: The Poplar graph

  • A: The boolean tensor

  • prog: The program sequence to add this operation to

  • debugPrefix: A debug name for the operation

4.2.2. popops/Cast.hpp

namespace popops

Common functions, such as elementwise and reductions.

Functions

poplar::Tensor cast(poplar::Graph &graph, const poplar::Tensor &src, const poplar::Type &dstType, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Cast elements of the specified src tensor to dstType, returning the result as a new tensor.

Note: If dstType == src.elementType(), then the operation is a copy.

Return

The resultant cast tensor.

Parameters
  • graph: The graph that the operation will be added to.

  • src: Source tensor to cast.

  • dstType: Type of the destination tensor.

  • prog: Program to add the cast operation to.

  • debugPrefix: Name of the operation, for debugging.

poplar::program::Program cast(poplar::Graph &graph, poplar::Tensor src, poplar::Tensor dst, const std::string &debugPrefix = "")

Create a program to copy tensor casting between types (for example, half->float).

Precondition: src.shape() == dst.shape()

Note: If dst.elementType() == src.elementType(), then the operation is just a copy.

Return

The program to perform this operation.

Parameters
  • graph: The graph that the operation will be added to.

  • src: Source tensor.

  • dst: Destination tensor.

  • debugPrefix: Name of the operation, for debugging.

void cast(poplar::Graph &graph, poplar::Tensor src, poplar::Tensor dst, poplar::ComputeSet cs)

Create vertices to copy element wise from the src tensor to the dst tensor casting between types (for example, half->float).

The vertices are added to the specified compute set.

Precondition: src.shape() == dst.shape()

Parameters
  • graph: The graph that the operation will be added to.

  • src: Source tensor.

  • dst: Destination tensor.

  • cs: Compute set to add the vertices to.

poplar::Tensor cast(poplar::Graph &graph, poplar::Tensor src, const poplar::Type &dstType, poplar::ComputeSet cs, const std::string &debugPrefix = "")

Create vertices to cast elements of the specified src tensor to dstType, returning the result as a new tensor.

The vertices are added to the specified compute set.

Return

Resultant destination tensor.

Parameters
  • graph: The graph that the operation will be added to.

  • src: Source tensor.

  • dstType: Destination type.

  • cs: Compute set to add the vertices to.

  • debugPrefix: Name of the operation, for debugging.

poplar::Tensor checkAccuracyWhenCast(poplar::Graph &graph, const poplar::Tensor &input, poplar::Type outputType, double tolerance, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Helper function which checks the relative error in the tensor input when casting it to type outputType.

The result is a single element bool tensor which is set to true if the error is < tolerance.

Preconditions:

  • input.elementType() == FLOAT

  • outputType == HALF

  • input.numElements() == 1

Return

Boolean tensor indicating error < tolerance

Parameters
  • graph: The graph that the operation will be added to.

  • input: Input tensor.

  • outputType: Output type after the cast operation.

  • tolerance: Allowed tolerance in error from cast operation.

  • prog: Program to add the check onto.

  • debugPrefix: Name of the operation, for debugging.

4.2.3. popops/CircBuf.hpp

namespace popops

Common functions, such as elementwise and reductions.

class CircBuf

Public Functions

CircBuf(poplar::Graph &graph, const poplar::Type &dataType, unsigned size, const std::vector<std::size_t> &shape, const std::string &debugPrefix = "")

CircBuf represents a circular buffer of tensors which can be indexed using prev().

Each call to add() will add the given tensor to the circular buffer with the potential to overwrite a previous element if the buffer is full.

Parameters
  • graph: Graph to add the circular buffer to.

  • dataType: Datatype of the tensor elements in buffer.

  • size: Size of the circular buffer.

  • shape: Shape of the tensor elements in buffer.

  • debugPrefix: Prefix of the circular buffer tensor, for debugging.

poplar::Tensor prev(unsigned i, poplar::program::Sequence &seq, const std::string &debugPrefix = "")

Return elements i entries old.

i must be < size

Return

Tensor returned from the circular buffer.

Parameters
  • i: Index into the circular buffer.

  • seq: Program to add the operation to.

  • debugPrefix: Name of the operation, for debugging.

void add(poplar::Tensor t, poplar::program::Sequence &seq, const std::string &debugPrefix = "")

Append an element to the end of the circular buffer.

Parameters
  • t: Tensor to append to the circular buffer

  • seq: Program to add the operation to.

  • debugPrefix: Name of the operation, for debugging.

poplar::Tensor getIndex() const

Tensor representing the index into the circular buffer.

unsigned size() const

Size of the circular buffer.

poplar::Graph::TileToTensorMapping getTileMapping()

Return tensor mapping of the tensor returned by indexing into a circular buffer.

Private Members

poplar::Graph &graph
unsigned size_
poplar::Tensor index
std::vector<std::size_t> shape
unsigned padElements
poplar::Tensor hist

4.2.4. popops/Collectives.hpp

namespace popops

Common functions, such as elementwise and reductions.

Functions

Chunks reduceScatter(poplar::Graph &graph, const poplar::Tensor &toReduce, popops::Operation op, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Given a tensor of rank 2 reduce across the outermost dimension using the specified reduction operator.

This function assumes index i in the outermost dimension is mapped to IPU i. The result is distributed over IPUs such that each IPU has a slice of the final result. The return value is a vector of chunks where chunk i resides on IPU i. The chunks may have different number of elements (for example, when the number of IPUs does not exactly divide the number of elements).

Parameters
  • graph: The graph.

  • toReduce: The tensor to reduce. Each partial should be mapped identically to the others across the IPUs with in the rank.

  • op: The reduction operator (for example, Operation::ADD).

  • prog: The program sequence to add operations to.

  • debugPrefix: String used as a prefix for compute sets.

  • options: Collective options (not currently used).

poplar::Tensor allGather(poplar::Graph &graph, const Chunks &toGather, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Broadcast data distributed over IPUs to all IPUs.

This function assumes chunk i is mapped to IPU i. The result is a 2D tensor that contains a copy of the data for each IPU. Index i in the outermost dimension of the result is mapped to IPU i.

Parameters
  • graph: The graph.

  • toGather: The chunks to gather.

  • prog: The program sequence to add operations to.

  • debugPrefix: String used as a prefix for compute sets.

  • options: Collective options. See reduceScatter().

poplar::Tensor allReduce(poplar::Graph &graph, const poplar::Tensor &toReduce, popops::Operation op, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Perform an all-reduce operation on the specified tensor.

This operation reduces across the outermost dimension of input and produces a tensor with the same shape where the innermost dimension is the result of the reduction and the outermost dimension is a number of copies of the result. This function assumes index i in the outermost dimension of the input is mapped to IPU i. Index i in the outermost dimension of the result is mapped to IPU i.

Parameters
  • graph: The graph.

  • toReduce: The tensor to reduce. Each partial should be mapped identically to the others across the ipus with in the rank.

  • op: The reduction operator (for example, Operation::ADD).

  • prog: The program sequence to add operations to.

  • debugPrefix: String used as a prefix for compute sets.

  • options: Collective options. See reduceScatter().

poplar::Tensor replicatedAllReduce(poplar::Graph &graph, const poplar::Tensor &data, popops::Operation op, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Perform an all-reduce operation on the specified replicated tensor.

This operation reduces across the tensors the replicated tensor is a handle for. The result returned as a replicated tensor.

Parameters
  • graph: The replicated graph the input tensor belongs to.

  • data: The replicated tensor to reduce.

  • op: The reduction operator (for example, Operation::ADD)

  • prog: The program sequence to add operations to.

  • debugPrefix: String used as a prefix for compute sets.

  • options: Collective options. See reduceScatter().

void replicatedAllReduceWithOutput(poplar::Graph &graph, const poplar::Tensor &data, poplar::Tensor &output, popops::Operation op, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Same as replicatedAllReduce but writes the result to the output tensor instead of creating a new one.

void replicatedAllReduceInPlace(poplar::Graph &graph, poplar::Tensor &data, popops::Operation op, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Perform an all-reduce operation on the specified replicated tensor.

This operation reduces across the tensors the replicated tensor is a handle for. The result is written to back to the input data tensor.

Parameters
  • graph: The replicated graph the input tensor belongs to.

  • data: The replicated tensor to reduce and written to.

  • op: The reduction operator (for example, Operation::ADD)

  • prog: The program sequence to add operations to.

  • debugPrefix: String used as a prefix for compute sets.

  • options: Collective options. See reduceScatter().

poplar::Tensor replicatedAllReduce(poplar::Graph &graph, poplar::Graph &parentGraph, const poplar::Tensor &data, popops::Operation op, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Perform an all-reduce operation on the specified replicated tensor.

This variant of replicatedAllReduce() is deprecated and may be removed in future.

poplar::Tensor replicatedReduceScatter(poplar::Graph &graph, const poplar::Tensor &toReduce, popops::Operation op, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Reduce the replicated rank-1 tensor “toReduce” with the result scattered across the replicas.

For an input of shape [numElements] mapped to a single IPU per replica, the output will have shape [ceil(numElements / replicationFactor)]. If replicationFactor does not evenly divide numElements, the result is zero-padded. For instance:

  • Before:

    • Replica0: toReduce[x0, y0, z0]

    • Replica1: toReduce[x1, y1, z1]

  • After:

    • Replica0: result[op(x0, x1), op(y0, y1)]

    • Replica1: result[op(z0, z1), 0]

For an input of shape [numElementsIPU0 + numElementsIPU1 + …] mapped to multiple IPUs per replica, the output will have shape: [ceil(numElementsIPU0 / replicationFactor) + ceil(numElementsIPU1 / replicationFactor) + …] with the result grouped per IPU. If replicationFactor does not evenly divide the number of elements on an IPU, the result is zero-padded per IPU. For instance:

  • Before:

    • Replica0: toReduce[x0, y0, z0, w0]

    • Replica1: toReduce[x1, y1, z1, w1]

    • Replica2: toReduce[x2, y2, z2, w2]

    • Replica3: toReduce[x3, y3, z3, w3]

    • Mapping: toReduce[IPU0, IPU0, IPU0, IPU1]

  • After:

    • Replica0: result[op(x0, x1, x2, x3), op(w0, w1, w2, w3)]

    • Replica1: result[op(y0, y1, y2, y3), 0]

    • Replica2: result[op(z0, z1, z2, z3), 0]

    • Replica3: result[0, 0]

    • Mapping: result[IPU0, IPU1]

poplar::Tensor replicatedAllGather(poplar::Graph &graph, const poplar::Tensor &toGather, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Gather the replicated tensor toGather and return the result so each replica will have a copy of all other replicas’ toGather tensors.

For instance:

  • Before:

    • Replica0: toGather[x,y]

    • Replica1: toGather[z,w]

    • Replica2: toGather[x1, y1]

  • After allGather:

    • Replica0: result[x,y,z,w,x1,y1]

    • Replica1: result[x,y,z,w,x1,y1]

    • Replica2: result[x,y,z,w,x1,y1]

      For an input of shape [incomingShape] the output will be [replicationFactor][incomingShape].

poplar::Tensor allToAllPersonalizedExchange(poplar::Graph &graph, const poplar::Tensor &input, poplar::program::Sequence &sequence, const std::string &debugPrefix = "")

Perform an all-to-all exchange of the elements of the input tensor based on replica ID.

The shape of the input must have the number of replicas in the graph as its first or only dimension. That dimension will be used to split up the tensor being sent, with each replica sending all splits except for the split index which matches its replica ID. That is, replica 2 will not send input[2] and so on.

The replica receiving the slice will copy that incoming slice into the output at the index which matches the replica ID of the replica which sent it. For instance:

  • Input tensor:

    • Replica0: Tensor T[x0,x1,x2]

    • Replica1: Tensor T[y0,y1,y2]

    • Replica2: Tensor T[z0,z1,z2]

  • Output tensor:

    • Replica0: Tensor T[x0,y0,z0]

    • Replica1: Tensor T[x1,y1,z1]

    • Replica2: Tensor T[x2,y2,z2]

struct Chunk

Public Functions

Chunk() = default
Chunk(poplar::Tensor tensor, unsigned index, unsigned offset)

Public Members

poplar::Tensor tensor
unsigned index
unsigned offset
struct Chunks

Public Functions

Chunks() = default
Chunks(unsigned size)

Public Members

poplar::Tensor originalInput
std::vector<Chunk> chunks

4.2.5. popops/CollectivesInterface.hpp

namespace popops

Common functions, such as elementwise and reductions.

class ReplicatedCollectivesInterface : public popops::VersionedInterface

Public Functions

~ReplicatedCollectivesInterface()
poplar::Tensor replicatedAllReduce(poplar::Graph &graph, const poplar::Tensor &data, popops::Operation op, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}) = 0

Perform an all-reduce operation on the specified replicated tensor.

This operation reduces across the tensors the replicated tensor is a handle for. The result returned as a replicated tensor.

Parameters
  • graph: The replicated graph the input tensor belongs to.

  • data: The replicated tensor to reduce.

  • op: The reduction operator (for example, Operation::ADD)

  • prog: The program sequence to add operations to.

  • debugPrefix: String used as a prefix for compute sets.

  • options: Collective options

void replicatedAllReduceWithOutput(poplar::Graph &graph, const poplar::Tensor &data, poplar::Tensor &output, popops::Operation op, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}) = 0

Same as above but writes the result to the output tensor instead of creating a new one.

poplar::Tensor replicatedAllReduce(poplar::Graph &graph, poplar::Graph &parentGraph, const poplar::Tensor &data, popops::Operation op, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}) = 0

Perform an all-reduce operation on the specified replicated tensor.

This variant of replicatedAllReduce() is deprecated and may be removed in future.

poplar::Tensor replicatedReduceScatter(poplar::Graph &graph, const poplar::Tensor &data, popops::Operation op, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &optionFlags = {}) = 0
poplar::Tensor replicatedAllGather(poplar::Graph &graph, const poplar::Tensor &data, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &optionFlags = {}) = 0

Public Static Attributes

std::shared_ptr<ReplicatedCollectivesInterface> defaultImpl
class VersionedInterface

Subclassed by popops::ReplicatedCollectivesInterface

Public Functions

std::string version() = 0

Version of the api.

4.2.6. popops/DynamicSlice.hpp

namespace poplar
namespace popops

Common functions, such as elementwise and reductions.

Functions

poplar::Tensor createSliceableTensor(poplar::Graph &graph, const poplar::Type &type, const std::vector<size_t> &shape, const std::vector<size_t> &dims, const std::vector<size_t> &sizes, std::size_t minGrainSize = 0, const std::string &debugPrefix = "")

Create and map a tensor to be sliced/updated efficiently.

The returned tensor will be laid out according to the plan.

Return

A tensor shape shape that is suitably mapped

Parameters
  • graph: The Poplar graph.

  • type: The type of the elements.

  • shape: The shape of the tensor to be slice/updated.

  • dims: The dimensions of the tensor that will be slice/updated.

  • sizes: The size of the slice in each of the dimensions.

  • minGrainSize: The minimum elements per slice mapped to each tile

  • debugPrefix: A string prepended to debugging info.

poplar::Tensor createSliceableTensor(poplar::Graph &graph, const poplar::Type &type, const std::vector<size_t> &shape, const std::vector<size_t> &dims, const std::vector<size_t> &sizes, const SlicePlan &plan, const poplar::OptionFlags &options, const std::string &debugPrefix = "")

Create and map a tensor to be sliced/updated efficiently.

The returned tensor will be spread over as many tiles as possible while respecting this minimum no. of elements per-tile and still being in a form to be sliced/updated efficiently.

Return

A tensor shape shape that is suitably mapped.

Parameters
  • graph: The Poplar graph.

  • type: The type of the elements.

  • shape: The shape of the tensor to be slice/updated.

  • dims: The dimensions of the tensor that will be slice/updated.

  • sizes: The size of the slice in each of the dimensions.

  • plan: Plan describing how the slicing/updating operation will be implemented.

  • options: Flags controlling how the operation will be implemented.

  • debugPrefix: A string prepended to debugging info.

poplar::Tensor createSliceTensor(poplar::Graph &graph, const poplar::Tensor &t, const std::vector<size_t> &dims, const std::vector<size_t> &sizes, std::size_t numIndices, const std::string &debugPrefix = "")

Create and map a tensor to be sliced into/updated from efficiently.

Introspection on the tensor to update is used to lay out the returned tensor such that it can be used to update that tensor efficiently.

Return

A tensor with shape [numIndices, shape…] mapped appropriately to be sliced into/updated from.

Parameters
  • graph: The Poplar graph.

  • t: The tensor to be updated.

  • dims: The dimensions of the tensor that will be sliced/updated.

  • sizes: The number of elements of each dimension in dims that will be sliced/updated.

  • numIndices: The number of slices this tensor should contain.

  • plan: Plan describing how the slicing/updating operation will be implemented.

  • options: Flags controlling how the operation will be implemented.

  • debugPrefix: A string prepended to debugging info.

poplar::Tensor createSliceTensor(poplar::Graph &graph, const poplar::Type &type, const std::vector<std::size_t> &shape, const std::vector<std::size_t> &dims, const std::vector<std::size_t> &sizes, std::size_t numIndices, const SlicePlan &plan, const poplar::OptionFlags &options, const std::string &debugPrefix = "")

Create and map a tensor to be sliced into/updated from efficiently.

The returned tensor is laid out according to the plan for the slice/update operation.

Return

A tensor with shape [numIndices, shape…] mapped appropriately to be sliced into/updated from.

Parameters
  • graph: The Poplar graph.

  • type: The type of the elements.

  • shape: The shape of the tensor to be slice/updated.

  • dims: The dimensions of the tensor that will be sliced/updated.

  • sizes: The number of elements of each dimension in dims that will be sliced/updated.

  • numIndices: The number of slices this tensor should contain.

  • plan: Plan describing how the slicing/updating operation will be implemented.

  • options: Flags controlling how the operation will be implemented.

  • debugPrefix: A string prepended to debugging info.

poplar::Tensor createIndicesTensor(poplar::Graph &graph, const std::vector<std::size_t> &dims, std::size_t numIndices, const SlicePlan &plan, const poplar::OptionFlags &options, const std::string &debugPrefix = "")

Create and map a tensor to contain indices for slicing/updating a tensor efficiently.

Return

A tensor of shape [numIndices, dims.size()] mapped appropriately to be used as the indices for a slice/update operation. Element type is always UNSIGNED_INT.

Parameters
  • graph: The Poplar graph.

  • dims: The dimensions of a tensor to be sliced/updated that will be sliced/updated using these indices.

  • numIndices: The number of indices this tensor should contain

  • plan: Plan describing how the slicing/updating operation will be implemented.

  • options: Flags controlling how the operation will be implemented.

  • debugPrefix: The prefix prepended to debugging info.

poplar::Tensor createSliceableTensorFromSlice(poplar::Graph &graph, const poplar::Tensor &s, const std::vector<std::size_t> &dims, const std::vector<std::size_t> &numSlices, const std::string &debugPrefix = "")
poplar::Tensor dynamicSlice(poplar::Graph &graph, const poplar::Tensor &t, const poplar::Tensor &offset, const std::vector<std::size_t> &dims, const std::vector<std::size_t> &sizes, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Slice a tensor based on offsets specified by a tensor.

dims gives the dimensions to slice, sizes defines the size of the slice in those dimensions and offset gives the base offsets on each execution.

offset[0], dims and sizes must have the same size. offset may have a second dimension with an element per tile, which can eliminate exchange.

Return

The specified subtensor

Parameters
  • graph: The Poplar graph.

  • t: The source tensor.

  • offset: A tensor of offsets at which the output is extracted.

  • dims: The dimensions of t to slice.

  • sizes: The size of the slice in each of the dimensions in dims.

  • prog: The program to be extended

  • debugPrefix: The prefix prepended to debugging info

poplar::Graph::TileToTensorMapping getSliceMapping(poplar::Graph &graph, const poplar::Tensor &t, const std::vector<std::size_t> &dims, const std::vector<std::size_t> &sizes)

Get the tile mapping for a slice of a tensor.

dims gives the dimensions to slice, sizes defines the size of the slice in those dimensions.

Parameters
  • graph: The Poplar graph.

  • t: The source tensor.

  • dims: The dimensions of t to slice.

  • sizes: The size of the slice in each of the dimensions in dims.

void dynamicUpdate(poplar::Graph &graph, const poplar::Tensor &t, const poplar::Tensor &s, const poplar::Tensor &offset, const std::vector<std::size_t> &dims, const std::vector<std::size_t> &sizes, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Update a subtensor at offsets read from a tensor.

dims gives the dimensions that are partially updated, by sizes elements, at offsets offset. Unspecified dimensions are copied in full with zero offset.

offset[0], dims and sizes must have the same size. offset may have a second dimension with an element per tile, which can eliminate exchange.

Parameters
  • graph: The Poplar graph.

  • t: The tensor to update.

  • s: The updates.

  • offset: The offset within t to be updated.

  • dims: The dimensions to be dynamically updated.

  • sizes: The size of the update in each of the dimensions in dims.

  • prog: The program to be extended.

  • debugPrefix: The prefix prepended to debugging info.

poplar::Tensor multiSlice(poplar::Graph &graph, const poplar::Tensor &t, const poplar::Tensor &offsets, const std::vector<std::size_t> &dims, const std::vector<std::size_t> &sizes, poplar::program::Sequence &prog, const SlicePlan &plan, const poplar::OptionFlags &options, const std::string &debugPrefix = "")

Take multiple slices from a base tensor.

The returned tensor will have a rank one greater than t. Its outer dimension will be offsets.dim(0). Note that dims refers to the dimensions of t. t can be created using createSliceableTensor() to ensure efficient mapping.

Parameters
  • graph: The Poplar graph.

  • t: The tensor being sliced.

  • offsets: The offsets within t to be sliced.

  • dims: The dimensions of t to be sliced.

  • sizes: The size of the update in each of the dimensions in dims.

  • prog: The program to be extended.

  • plan: Plan describing how the operation will be implemented.

  • options: Flags controlling how the operation will be implemented.

  • debugPrefix: The prefix prepended to debugging info.

void multiUpdate(poplar::Graph &graph, const poplar::Tensor &t, const poplar::Tensor &s, const poplar::Tensor &offsets, const std::vector<std::size_t> &dims, const std::vector<std::size_t> &sizes, poplar::program::Sequence &prog, const SlicePlan &plan, const poplar::OptionFlags &options, const std::string &debugPrefix = "")

Update multiple slices in a tensor.

Parameters
  • graph: The Poplar graph.

  • t: The tensor being updated.

  • s: The slices to insert.

  • offsets: The offsets within t to be updated.

  • dims: The dimensions of t to be updated.

  • sizes: The size of the update in each of the dimensions in dims.

  • prog: The program to be extended.

  • plan: Plan describing how the operation will be implemented.

  • options: Flags controlling how the operation will be implemented.

  • debugPrefix: The prefix prepended to debugging info.

void multiUpdateAdd(poplar::Graph &graph, const poplar::Tensor &t, const poplar::Tensor &s, const poplar::Tensor &offsets, const poplar::Tensor &scale, const std::vector<std::size_t> &dims, const std::vector<std::size_t> &sizes, poplar::program::Sequence &prog, const SlicePlan &plan, const poplar::OptionFlags &options, const std::string &debugPrefix = "")

Accumulate multiple slices in a tensor for i offsets: t[offsets[i]] += scale * s[i] t, s and scale must have the same element type.

Parameters
  • graph: The Poplar graph.

  • t: The tensor being updated (must be rank 2).

  • s: The slices to accumulate.

  • offsets: The offsets within t to be accumulated.

  • scale: The scaling to apply to the update.

  • dims: The dimensions of t to be accumulated (must be rank 1).

  • sizes: The size of the accumulate in each of the dimensions in dims.

  • prog: The program to be extended.

  • plan: Plan describing how the operation will be implemented.

  • options: Flags controlling how the operation will be implemented.

  • debugPrefix: The prefix prepended to debugging info.

class SlicePlan

Public Functions

SlicePlan()
~SlicePlan()
SlicePlan(const SlicePlan &other)
SlicePlan(SlicePlan &&other)
SlicePlan &operator=(const SlicePlan &other)
SlicePlan &operator=(SlicePlan &&other)
SlicePlan(std::unique_ptr<SlicePlanInternal> internal)
SlicePlanInternal &getImpl() const

Private Members

std::unique_ptr<SlicePlanInternal> internal

Friends

friend std::ostream &operator<<(std::ostream &o, const SlicePlan &p)
namespace embedding

Functions

SlicePlan plan(const poplar::Graph &graph, const poplar::Type &dataType, const std::size_t numEntries, const std::size_t outputSize, const std::vector<std::size_t> &numLookups, const poplar::OptionFlags &options)

Create a plan for implementing a set of operations on an embedding matrix.

Return

A plan which describes how the embedding matrix lookup/update operations should be implemented.

Parameters
  • graph: The graph the operation will be added to.

  • dataType: The data type of the entries in the embedding matrix and the resulting lookups from the matrix.

  • numEntries: Input size of embedding matrix.

  • outputSize: Output size of embedding matrix lookup.

  • numLookups: Vector of numbers of indices which will be looked up in the embedding matrix.

  • options: Set of option flags controlling how the operation will be implemented.

4.2.7. popops/ElementWise.hpp

These functions perform the same operation on each element of one or more tensors.

Every function has an in-place overload that writes the result of the function to the first tensor argument of the function.

The functions that perform operations on two tensors also have overloads for one of the tensors being a constant scalar. These functions perform the same operation on each element in the remaining tensor using the scalar as the other side of the operation for all elements.

namespace popops

Common functions, such as elementwise and reductions.

Functions

poplar::Tensor varianceToInvStdDev(poplar::Graph &graph, const poplar::Tensor &src, const poplar::Tensor &epsilon, poplar::program::Sequence &prog, const poplar::Type dstType = poplar::HALF, const std::string &debugPrefix = "")

Variance conversion operations can be created using the map functions below, but that requires the input and output to be of the same type.

It can be an advantage to maintain variance in full precision and inverse standard deviation in half precision. These supplementary functions make that possible.

Return

A tensor containing the elements resulting from the variance to/from standard deviation conversion.

Parameters
  • graph: The graph to update.

  • src: The source Tensor

  • epsilon: A tensor initialised with the epsilon parameter used in conversion. Must have a single element and have the same type as the input type. Alternatively a float value can be used and the appropriate tensor will be created.

  • prog: The sequence to extend with the execution of conversion.

  • dstType: The type of the tensor to be output. Must be FLOAT when outputting variance, HALF when outputting standard deviation, or equal to the input type.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

poplar::Tensor invStdDevToVariance(poplar::Graph &graph, const poplar::Tensor &src, const poplar::Tensor &epsilon, poplar::program::Sequence &prog, const poplar::Type dstType = poplar::FLOAT, const std::string &debugPrefix = "")
poplar::Tensor varianceToInvStdDev(poplar::Graph &graph, const poplar::Tensor &src, const float epsilon, poplar::program::Sequence &prog, const poplar::Type dstType = poplar::HALF, const std::string &debugPrefix = "")
poplar::Tensor invStdDevToVariance(poplar::Graph &graph, const poplar::Tensor &src, const float epsilon, poplar::program::Sequence &prog, const poplar::Type dstType = poplar::FLOAT, const std::string &debugPrefix = "")
poplar::Tensor map(poplar::Graph &graph, const expr::Expr &expr, const std::vector<poplar::Tensor> &ts, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Map an expression across tensors.

Element Wise Options

  • enableGenerateCodelet (true, false) [=true]

    If true (and all of the inputs are the same size and do not alias), a codelet is generated to execute this map operation. A codelet will not be generated if there is only a single operation unless forceGenerateCodelet is true.

    Return

    A tensor containing the elements resulting from the application of the expression across the tensors.

    Parameters
    • graph: The graph to update.

    • expr: The expression to map across the tensors. The placeholders in the expressions will be substituted with corresponding elements from the tensors in ts.

    • ts: The list of tensors to map the expression across. If elements from these tensors are used in binary/ternary operations in the expression the numpy-style broadcast rules are used to match the shapes of the tensors (see poputil::broadcastToMatch()).

    • prog: The sequence to extend with the execution of the expression evaluation.

    • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function

    • options: A list of flags to pass to the expression evaluator.

poplar::Tensor map(poplar::Graph &graph, expr::UnaryOpType op, const poplar::Tensor &t, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor map(poplar::Graph &graph, expr::BinaryOpType op, const poplar::Tensor &a, const poplar::Tensor &b, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor map(poplar::Graph &graph, expr::TernaryOpType op, const poplar::Tensor &a, const poplar::Tensor &b, const poplar::Tensor &c, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void mapInPlace(poplar::Graph &graph, const expr::Expr &expr, const std::vector<poplar::Tensor> &ts, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Map an expression across tensors and assign it back to the first tensor given.

Return

A tensor containing the elements resulting from the application of the expression across the tensors.

Parameters
  • graph: The graph to update.

  • expr: The expression to map across the tensors. The placeholders in the expressions will be substituted with corresponding elements from the tensors in ts. The result of the expression is then written to the elements of the first tensor in ts.

  • ts: The list of tensors to map the expression across. If elements from these tensors are used in binary/ternary operations in the expression the numpy-style broadcast rules are used to match the shapes of the tensors (see poputil::broadcastToMatch()).

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function

  • options: Element wise options. See map().

void mapInPlace(poplar::Graph &graph, expr::UnaryOpType op, const poplar::Tensor &t, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void mapInPlace(poplar::Graph &graph, expr::BinaryOpType op, const poplar::Tensor &a, const poplar::Tensor &b, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void mapInPlace(poplar::Graph &graph, expr::TernaryOpType op, const poplar::Tensor &a, const poplar::Tensor &b, const poplar::Tensor &c, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor abs(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the absolute value of each element in A.

Return

A tensor where each element is equivalent to the result of std::abs(a) where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void absInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor asin(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the arc-sine of each element in A.

Return

A tensor where each element is equivalent to the result of std::asin(a) where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void asinInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor bitwiseNot(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the bitwise NOT operation for each element in A.

Return

A tensor where each element is equivalent to the result of ~a where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void bitwiseNotInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor ceil(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the ceiling of each element in A.

Return

A tensor where each element is equivalent to the result of std::ceil(a) where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void ceilInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor countLeadingZeros(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the number of binary leading zeros of each element in A.

Note

If the element is zero then it is treated as 32 leading zeros.

Return

A tensor where each element is equivalent to the result of a ? __builtin_clz(a) : 32 where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void countLeadingZerosInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor cos(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the cosine of each element in A.

Return

A tensor where each element is equivalent to the result of std::cos(a) where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void cosInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor exp(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the exponential of each element in A.

Return

A tensor where each element is equivalent to the result of std::exp(a) where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void expInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor expm1(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the exponential of each element in A minus one.

Return

A tensor where each element is equivalent to the result of std::expm1(a) where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void expm1InPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor floor(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the floor of each element in A.

Return

A tensor where each element is equivalent to the result of std::floor(a) where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void floorInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor inv(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the inverse of each element in A.

Return

A tensor where each element is equivalent to the result of 1 / a where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void invInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor log(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the log base-e of each element in A.

Return

A tensor where each element is equivalent to the result of std::log(a) where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void logInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor log1p(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the log base-e of each element in A plus one.

Return

A tensor where each element is equivalent to the result of std::log1p(a) where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void log1pInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor logicalNot(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the logical NOT of each element in A.

Return

A tensor where each element is equivalent to the result of !a where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void logicalNotInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor neg(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the negation of each element in A.

Return

A tensor where each element is equivalent to the result of -1 * a where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void negInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor popcount(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the popcount of each element in A.

Return

A tensor where each element is equivalent to the result of std::popcount(a) where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void popcountInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor signum(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the signum of each element in A.

Return

A tensor where each element is one of -1, 0 or +1 if the corresponding element in A was less than, equal to or greater than 0 respectively.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void signumInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor sin(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the sine of each element in A.

Return

A tensor where each element is equivalent to the result of std::sin(a) where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void sinInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor tan(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the tangent of each element in A.

Return

A tensor where each element is equivalent to the result of std::tan(a) where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void tanInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor tanh(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the hyperbolic tangent of each element in A.

Return

A tensor where each element is equivalent to the result of std::tanh(a) where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void tanhInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor round(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Round each element in A.

Return

A tensor where each element is equivalent to the result of std::round(a) where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void roundInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor sqrt(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the square-root for each element in A.

Return

A tensor where each element is equivalent to the result of std::sqrt(a) where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void sqrtInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor square(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the square for each element in A.

Return

A tensor where each element is equivalent to the result of x * x where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void squareInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor sigmoid(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the sigmoid for each element in A.

Return

A tensor where each element is equivalent to the result of 1 / (1 + exp(-x)) where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void sigmoidInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor rsqrt(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the reciprocal square root for each element in A.

Return

A tensor where each element is equivalent to the result of 1 / sqrt(a) where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void rsqrtInPlace(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor isFinite(poplar::Graph &graph, const poplar::Tensor &A, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Check if each element in A is finite.

Return

A tensor where each element is equivalent to the result of std::isfinite(a) where a is an element of A.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
void checkTypes(poplar::Type elementType, constType constant)

Check that the host compile-time type constType is compatible with the run-time IPU type elementType.

Parameters
  • elementType: The run-time IPU type.

  • constant: Unused.

Template Parameters
  • constType: The host compile-time type.

Exceptions
  • std::runtime_error: if the types are not compatible.

template<>
void checkTypes<float>(poplar::Type elementType, float constant)
template<>
void checkTypes<double>(poplar::Type elementType, double constant)
poplar::Tensor add(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Add each element in A to the corresponding element in B.

Return

A tensor where each element is the result of a + b, where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • B: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor add(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor add(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void addInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void addInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor atan2(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the two argument arctangent of each element in A with the corresponding element in B.

Return

A tensor where each element is the result of atan2(a, b), where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • B: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor atan2(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor atan2(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void atan2InPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void atan2InPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor bitwiseAnd(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the bitwise AND of each element in A with the corresponding element in B.

Return

A tensor where each element is the result of a & b, where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • B: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor bitwiseAnd(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor bitwiseAnd(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void bitwiseAndInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void bitwiseAndInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor bitwiseOr(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the bitwise OR of each element in A with the corresponding element in B.

Return

A tensor where each element is the result of a | b, where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • B: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor bitwiseOr(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor bitwiseOr(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void bitwiseOrInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void bitwiseOrInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor bitwiseXor(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the bitwise XOR of each element in A with the corresponding element in B.

Return

A tensor where each element is the result of a ^ b, where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • B: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor bitwiseXor(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor bitwiseXor(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void bitwiseXorInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void bitwiseXorInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor bitwiseXnor(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the bitwise XNOR of each element in A with the corresponding element in B.

Return

A tensor where each element is the result of !(a ^ b), where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • B: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor bitwiseXnor(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor bitwiseXnor(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void bitwiseXnorInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void bitwiseXnorInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor div(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Divide each element in A by the corresponding element in B.

Return

A tensor where each element is the result of a / b, where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: The tensor of dividends.

  • B: The tensor of divisors.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor div(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor div(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void divInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void divInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor eq(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Check if each element in A is equal to the corresponding element in B.

Return

A tensor where each element is the result of a == b, where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • B: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor eq(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor eq(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void eqInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void eqInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor gteq(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Check if each element in A is greater than or equal to the corresponding element in B.

Return

A tensor where each element is the result of a >= b, where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • B: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor gteq(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor gteq(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void gteqInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void gteqInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor gt(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Check if each element in A is greater than the corresponding element in B.

Return

A tensor where each element is the result of a > b, where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • B: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor gt(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor gt(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void gtInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void gtInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor invStdDevToVariance(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

See invStdDevToVariance().

template<typename constType>
poplar::Tensor invStdDevToVariance(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor invStdDevToVariance(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void invStdDevToVarianceInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void invStdDevToVarianceInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor lteq(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Check if each element in A is less than or equal to the corresponding element in B.

Return

A tensor where each element is the result of a <= b, where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • B: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor lteq(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor lteq(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void lteqInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void lteqInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor logicalAnd(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the logical AND (&&) of each element in A with the corresponding element in B.

Return

A tensor where each element is the result of a && b, where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • B: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor logicalAnd(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor logicalAnd(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void logicalAndInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void logicalAndInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor logicalOr(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the logical OR (||) of each element in A with the corresponding element in B.

Return

A tensor where each element is the result of a || b, where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • B: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor logicalOr(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor logicalOr(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void logicalOrInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void logicalOrInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor lt(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Check if each element in A is less than the corresponding element in B.

Return

A tensor where each element is the result of a < b, where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • B: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor lt(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor lt(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void ltInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void ltInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor max(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the maximum of each element in A with the corresponding element in B.

Return

A tensor where each element is the result of max(a, b), where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • B: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor max(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor max(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void maxInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void maxInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor min(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the minimum of each element in A with the corresponding element in B.

Return

A tensor where each element is the result of min(a, b), where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • B: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor min(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor min(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void minInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void minInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor mul(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Multiply each element in A by the corresponding element in B.

Return

A tensor where each element is the result of a * b, where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • B: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor mul(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor mul(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void mulInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void mulInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor neq(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Check if each element in A is not equal to the corresponding element in B.

Return

A tensor where each element is the result of a != b, where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: A tensor of elements.

  • B: A tensor of elements.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor neq(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor neq(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void neqInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void neqInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor pow(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute each element in A to the power of the corresponding element in B.

Return

A tensor where each element is equal to pow(a, b), where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: The tensor of bases.

  • B: The tensor of exponents.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor pow(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor pow(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void powInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void powInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor rem(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute the remainder of each element in A divided by the corresponding element in B.

Return

A tensor where each element is equal to a % b, where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: The tensor of dividends.

  • B: The tensor of divisors.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor rem(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor rem(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void remInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void remInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor shiftLeft(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Shift the elements of A left by the corresponding elements of B.

Return

A tensor where each element is equal to a << b, where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: The tensor of elements which to left-shift.

  • B: The tensor of elements that describe the amount to left-shift by. A.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor shiftLeft(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor shiftLeft(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void shiftLeftInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void shiftLeftInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor shiftRight(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Shift the elements of A right by the corresponding elements of B.

Return

A tensor where each element is equal to a >> b (without sign extension), where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: The tensor of elements which to right-shift.

  • B: The tensor of elements that describe the amount to right-shift by. A.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor shiftRight(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

See shiftRight().

template<typename constType>
poplar::Tensor shiftRight(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

See shiftRight().

void shiftRightInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

See shiftRight().

template<typename constType>
void shiftRightInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

See shiftRight().

poplar::Tensor shiftRightSignExtend(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Shift the elements of A right with sign extension by the corresponding elements of B.

Return

A tensor where each element is equal to a >> b with sign extension, where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: The tensor of elements which to right-shift.

  • B: The tensor of elements that describe the amount to right-shift by. A.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor shiftRightSignExtend(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor shiftRightSignExtend(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void shiftRightSignExtendInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void shiftRightSignExtendInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor sub(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Subtract the elements of B from A and return the result in a new tensor.

Return

A tensor where each element is equal to a - b, where a and b are the corresponding elements of A and B tensors respectively.

Parameters
  • graph: The graph to update.

  • A: The tensor of elements which will be subtracted from.

  • B: The tensor of elements to subtract from A.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

template<typename constType>
poplar::Tensor sub(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor sub(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void subInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void subInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor varianceToInvStdDev(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

See varianceToInvStdDev().

template<typename constType>
poplar::Tensor varianceToInvStdDev(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
poplar::Tensor varianceToInvStdDev(poplar::Graph &graph, const constType A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void varianceToInvStdDevInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
template<typename constType>
void varianceToInvStdDevInPlace(poplar::Graph &graph, const poplar::Tensor &A, const constType B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor select(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, const poplar::Tensor &C, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Populate the returned tensor with elements from A or B depending on the corresponding element of C.

That is, for each element in the output compute c ? a : b, where a, b, c are the corresponding elements in the tensors A, B, C respectively.

Return

A tensor containing the elements from A where the corresponding elements in C were not equal to zero and containing the elements from B where the corresponding elements in C were zero.

Parameters
  • graph: The graph to update.

  • A: One of the tensors containing the elements to select from.

  • B: One of the tensors containing the elements to select from.

  • C: The tensor containing the elements to use as predicates.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void selectInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, const poplar::Tensor &C, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor clamp(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, const poplar::Tensor &C, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Populate the returned tensor with elements from A but clamp them such that each element is greater than or equal to the corresponding element in B and less than or equal to the corresponding element in C.

That is, for each element in the returned tensor compute: min(max(a, b), c) where a, b, c are the corresponding elements in the tensors A, B, C respectively.

Return

A tensor containing the elements resulting from the application of the expression across the tensors.

Parameters
  • graph: The graph to update.

  • A: The tensor containing the elements to clamp.

  • B: The tensor containing the elements to use as minimums.

  • C: The tensor containing the elements to use as maximums.

  • prog: The sequence to extend with the execution of the expression evaluation.

  • debugPrefix: A debug prefix to be added to debug strings in compute sets and variables created by this function.

  • options: Element-wise options. See map().

void clampInPlace(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, const poplar::Tensor &C, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

4.2.8. popops/elementwiseCodelets.hpp

Defines

INSTANTIATE_OP_1(v, op, t)
INSTANTIATE_OP_2(v, op, t, ...)
INSTANTIATE_OP_3(v, op, t, ...)
INSTANTIATE_OP_4(v, op, t, ...)
INSTANTIATE_OP_5(v, op, t, ...)
SELECT_VARGS(_1, _2, _3, _4, _5, NAME, ...)
INSTANTIATE_OP(v, op, ...)

Functions

__attribute__((always_inline)) static unsigned getWsr(void)
__attribute__ ((noinline)) unsigned divideWork(const unsigned size

Variables

const unsigned vectorWidthShifts
const unsigned const unsigned worker
constexpr auto ONE_PTR = poplar::VectorLayout::ONE_PTR
constexpr auto SPAN = poplar::VectorLayout::SPAN
constexpr auto SCALED_PTR64 = poplar::VectorLayout::SCALED_PTR64
constexpr auto SCALED_PTR32 = poplar::VectorLayout::SCALED_PTR32
template<class T>
struct isVectorType

Public Static Attributes

const bool value = false
template<>
struct isVectorType<float2>

Public Static Attributes

const bool value = true
template<>
struct isVectorType<half2>

Public Static Attributes

const bool value = true
template<>
struct isVectorType<half4>

Public Static Attributes

const bool value = true
namespace architecture

Typedefs

using active = ipu

4.2.9. popops/ElementWiseUtil.hpp

namespace popops

Common functions, such as elementwise and reductions.

Functions

poplar::Tensor createOutputForElementWiseOp(poplar::Graph &graph, const std::vector<poplar::Tensor> &inputs, const poplar::Type &outputType, const std::string &debugName = "")

Create a tensor for use as the output of an element-wise operation (operation with no dependency between more than one element of the output and any given element of any input tensor).

Use the mapping of this tensor to map element-wise operations to tiles to produce an operation that is computationally balanced across tiles and which minimises exchange.

All input tensors must have the same shape.

Return

A tensor with the same shape as the given inputs, with a complete tile mapping.

Parameters
  • graph: A graph to add the tensor to and which the inputs belong to.

  • inputs: List of input tensors for the element-wise operation.

  • outputType: The element type of the tensor.

  • debugName: Debug name given to the tensor.

4.2.10. popops/Encoding.hpp

namespace popops

Common functions, such as elementwise and reductions.

Functions

void encodeOneHot(poplar::Graph &graph, const poplar::Tensor &indices, const poplar::Tensor &encoded, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Encode a given set of indices as a set of one-hot vectors per-index with a hot element at that index.

i.e. given a 1-dimensional indices tensor with length N and a 2-dimensional encoded tensor with shape N * x encoded is a tensor with a single element equal to 1, and all others equal 0. The single hot element in each row is given by the indices in indices.

Parameters
  • graph: The graph to add the tensor and any vertices needed for the encoding to.

  • encoded: Tensor to encode output to.

  • indices: 1-dimensional tensor containing indices to encode as one-hot vectors. A codepoint MASKED_LABEL_CODE is reserved to indicate that the encoding is not done for that index.

  • prog: Sequence which the programs that perform the encoding are added to.

  • debugPrefix: Optional debug prefix for programs/variables used to perform the encoding.

void encodeOneHot(poplar::Graph &graph, const poplar::Tensor &indices, const poplar::Tensor &encoded, poplar::program::Sequence &prog, const poplar::Tensor &on, const poplar::Tensor &off, const std::string &debugPrefix = "")

Encode a given set of indices as a set of one-hot vectors per-index with a hot element at that index.

i.e. given a 1-dimensional indices tensor with length N and a 2-dimensional encoded tensor with shape N * x encoded is a tensor with a single element equal to on, and all others equal to off as given by the user. The single hot element in each row is given by the indices in indices.

Parameters
  • graph: The graph to add the tensor and any vertices needed for the encoding to.

  • encoded: Tensor to encode output to.

  • indices: 1-dimensional tensor containing indices to encode as one-hot vectors.

  • prog: Sequence which the programs that perform the encoding are added to.

  • debugPrefix: Optional debug prefix for programs/variables used to perform the encoding.

  • on: Value which represents the “On” state in the one hot encoded output.

  • off: Value which represents the “Off” state.

void iota(poplar::Graph &graph, const poplar::Tensor &t, unsigned startInteger, poplar::program::Sequence &prog, const std::string &debugPrefix)

Returns a right-open range of integers [startInteger, startInteger + length) where, length is the number of elements of mapped 1-D output tensor t.

Output tensor can be of type INT or UNSIGNED_INT.

Parameters
  • graph: The graph to add the tensor and any vertices needed for the operation.

  • t: 1-D tensor to write the encoded output to. Tensor must be mapped.

  • startInteger: The start integer in the output range.

  • prog: Sequence which the programs that perform the encoding are added to.

  • debugPrefix: Optional debug prefix for programs/variables used to perform the encoding.

void iota(poplar::Graph &graph, const poplar::Tensor &t, int startInteger, poplar::program::Sequence &prog, const std::string &debugPrefix)

Returns a right-open range of integers [startInteger, startInteger + length) where, length is the number of elements of mapped 1-D output tensor t.

Output tensor can be of type INT or UNSIGNED_INT.

Parameters
  • graph: The graph to add the tensor and any vertices needed for the operation.

  • t: 1-D tensor to write the encoded output to. Tensor must be mapped.

  • startInteger: The start integer in the output range.

  • prog: Sequence which the programs that perform the encoding are added to.

  • debugPrefix: Optional debug prefix for programs/variables used to perform the encoding.

4.2.11. popops/EncodingConstants.hpp

Defines

MASKED_LABEL_CODE
EPS_LOG_N_FLOAT
EPS_LOG_N_HALF

4.2.12. popops/Expr.hpp

Defines

POPLIBS_DEFINE_EXPR_UNARY_OP(Name, Op)
POPLIBS_DEFINE_EXPR_UNARY_OP_AND_SYMBOL(Name, Op, Sym)
POPLIBS_DEFINE_EXPR_BINARY_OP(Name, Op)
POPLIBS_DEFINE_EXPR_BINARY_OP_AND_SYMBOL(Name, Op, Sym)
POPLIBS_DEFINE_EXPR_TERNARY_OP(Name, Op)
namespace popops

Common functions, such as elementwise and reductions.

namespace expr

Functions

ConstHalf operator""_half(long double x)
const PlaceHolder _1 (1)
const PlaceHolder _2 (2)
const PlaceHolder _3 (3)
const PlaceHolder _4 (4)
const PlaceHolder _5 (5)
const PlaceHolder _6 (6)
const PlaceHolder _7 (7)
const PlaceHolder _8 (8)
const PlaceHolder _9 (9)
const PlaceHolder _10 (10)
const PlaceHolder _11 (11)
const PlaceHolder _12 (12)
const PlaceHolder _13 (13)
const PlaceHolder _14 (14)
const PlaceHolder _15 (15)
const PlaceHolder _16 (16)
const PlaceHolder _17 (17)
const PlaceHolder _18 (18)
const PlaceHolder _19 (19)
const PlaceHolder _20 (20)
BitwiseNot operator~(const Expr &a)
Not operator!(const Expr &a)
Neg operator-(const Expr &a)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Add>::type operator+(const T &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Add>::type operator+(const Expr &a, const T &b)
Add operator+(const Expr &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, BitwiseAnd>::type operator&(const T &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, BitwiseAnd>::type operator&(const Expr &a, const T &b)
BitwiseAnd operator&(const Expr &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, BitwiseOr>::type operator|(const T &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, BitwiseOr>::type operator|(const Expr &a, const T &b)
BitwiseOr operator|(const Expr &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, BitwiseXor>::type operator^(const T &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, BitwiseXor>::type operator^(const Expr &a, const T &b)
BitwiseXor operator^(const Expr &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Divide>::type operator/(const T &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Divide>::type operator/(const Expr &a, const T &b)
Divide operator/(const Expr &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Equal>::type operator==(const T &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Equal>::type operator==(const Expr &a, const T &b)
Equal operator==(const Expr &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Gte>::type operator>=(const T &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Gte>::type operator>=(const Expr &a, const T &b)
Gte operator>=(const Expr &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Gt>::type operator>(const T &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Gt>::type operator>(const Expr &a, const T &b)
Gt operator>(const Expr &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Lte>::type operator<=(const T &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Lte>::type operator<=(const Expr &a, const T &b)
Lte operator<=(const Expr &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, And>::type operator&&(const T &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, And>::type operator&&(const Expr &a, const T &b)
And operator&&(const Expr &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Or>::type operator||(const T &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Or>::type operator||(const Expr &a, const T &b)
Or operator||(const Expr &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Lt>::type operator<(const T &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Lt>::type operator<(const Expr &a, const T &b)
Lt operator<(const Expr &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Mul>::type operator*(const T &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Mul>::type operator*(const Expr &a, const T &b)
Mul operator*(const Expr &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, NotEqual>::type operator!=(const T &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, NotEqual>::type operator!=(const Expr &a, const T &b)
NotEqual operator!=(const Expr &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Rem>::type operator%(const T &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Rem>::type operator%(const Expr &a, const T &b)
Rem operator%(const Expr &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Shl>::type operator<<(const T &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Shl>::type operator<<(const Expr &a, const T &b)
Shl operator<<(const Expr &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Shr>::type operator>>(const T &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Shr>::type operator>>(const Expr &a, const T &b)
Shr operator>>(const Expr &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Sub>::type operator-(const T &a, const Expr &b)
template<typename T>
std::enable_if<!std::is_base_of<Expr, T>::value, Sub>::type operator-(const Expr &a, const T &b)
Sub operator-(const Expr &a, const Expr &b)
class Abs : public popops::expr::UnaryOp

Public Functions

Abs(const Expr &a)
class Add : public popops::expr::BinaryOp

Public Functions

Add(const Expr &a, const Expr &b)
class And : public popops::expr::BinaryOp

Public Functions

And(const Expr &a, const Expr &b)
class Any

Public Functions

Any(const Expr &expr)
operator Expr&()
operator const Expr&() const
std::string name(const std::vector<poplar::Tensor> &inputs) const

Private Members

std::unique_ptr<Expr> expr
class Asin : public popops::expr::UnaryOp

Public Functions

Asin(const Expr &a)
class Atan2 : public popops::expr::BinaryOp

Public Functions

Atan2(const Expr &a, const Expr &b)
class BinaryOp : public popops::expr::ExprType<BinaryOp>

Subclassed by popops::expr::Add, popops::expr::And, popops::expr::Atan2, popops::expr::BitwiseAnd, popops::expr::BitwiseOr, popops::expr::BitwiseXnor, popops::expr::BitwiseXor, popops::expr::Divide, popops::expr::Equal, popops::expr::Gt, popops::expr::Gte, popops::expr::InvStdDevToVariance, popops::expr::Lt, popops::expr::Lte, popops::expr::Max, popops::expr::Min, popops::expr::Mul, popops::expr::NotEqual, popops::expr::Or, popops::expr::Pow, popops::expr::Rem, popops::expr::Shl, popops::expr::Shr, popops::expr::ShrSE, popops::expr::Sub, popops::expr::VarianceToInvStdDev

Public Functions

BinaryOp(BinaryOpType type, const Expr &a, const Expr &b)
BinaryOpType getOpType() const
const Expr &getLHS() const
const Expr &getRHS() const
std::unique_ptr<Expr> clone() const override
std::string name(const std::vector<poplar::Tensor> &inputs) const override
std::string exprName(const std::vector<poplar::Tensor> &inputs) const

Private Members

BinaryOpType type
std::unique_ptr<Expr> a
std::unique_ptr<Expr> b

Private Static Attributes

const std::vector<std::string> BinaryOpNames
class BitwiseAnd : public popops::expr::BinaryOp

Public Functions

BitwiseAnd(const Expr &a, const Expr &b)
class BitwiseNot : public popops::expr::UnaryOp

Public Functions

BitwiseNot(const Expr &a)
class BitwiseOr : public popops::expr::BinaryOp

Public Functions

BitwiseOr(const Expr &a, const Expr &b)
class BitwiseXnor : public popops::expr::BinaryOp

Public Functions

BitwiseXnor(const Expr &a, const Expr &b)
class BitwiseXor : public popops::expr::BinaryOp

Public Functions

BitwiseXor(const Expr &a, const Expr &b)
class Cast : public popops::expr::ExprType<Cast>

Public Functions

Cast(const Expr &a_, const poplar::Type bType_)
const Expr &getLHS() const
const poplar::Type &getRHSType() const
std::unique_ptr<Expr> clone() const override
std::string name(const std::vector<poplar::Tensor> &inputs) const override

Private Members

std::unique_ptr<Expr> a
poplar::Type bType
class Ceil : public popops::expr::UnaryOp

Public Functions

Ceil(const Expr &a)
class Clamp : public popops::expr::TernaryOp

Public Functions

Clamp(const Expr &a, const Expr &b, const Expr &c)
class Const : public popops::expr::ExprType<Const>

Subclassed by popops::expr::ConstHalf

Public Functions

template<typename T>
Const(T x)
Const(poplar::TypeTraits typeTraits_, poplar::Type type_, const char *data_)
char *getData() const
const poplar::TypeTraits &getTypeTraits() const
const poplar::Type &getType() const
std::string printValue() const
std::unique_ptr<Expr> clone() const override
std::string name(const std::vector<poplar::Tensor>&) const override

Protected Functions

template<typename T>
Const(T x, bool isHalfType)

Private Members

poplar::TypeTraits typeTraits
poplar::Type type
std::unique_ptr<char[]> data
class ConstHalf : public popops::expr::Const

Public Functions

ConstHalf(float x)
class Cos : public popops::expr::UnaryOp

Public Functions

Cos(const Expr &a)
class Divide : public popops::expr::BinaryOp

Public Functions

Divide(const Expr &a, const Expr &b)
class Equal : public popops::expr::BinaryOp

Public Functions

Equal(const Expr &a, const Expr &b)
class Exp : public popops::expr::UnaryOp

Public Functions

Exp(const Expr &a)
class Expm1 : public popops::expr::UnaryOp

Public Functions

Expm1(const Expr &a)
class Expr
#include <Expr.hpp>

Type to represent element expressions.

This class represents an expression that can be applied to elements of Tensors.

The type is an abstract type which can be instantiated by its sub-classes to build up expressions, for example: Tanh(Add(Square(_1), Const(3)))).

Expressions can be applied to tensors with the popops::map() and popops::mapInPlace() functions.

Subclassed by popops::expr::ExprType< BinaryOp >, popops::expr::ExprType< Cast >, popops::expr::ExprType< Const >, popops::expr::ExprType< PlaceHolder >, popops::expr::ExprType< TernaryOp >, popops::expr::ExprType< UnaryOp >, popops::expr::ExprType< T >

Public Functions

~Expr()
template<class T>
bool isA() const
template<class T>
T *getAs()
template<class T>
const T *getAs() const
std::unique_ptr<Expr> clone() const = 0
std::string name(const std::vector<poplar::Tensor>&) const = 0

Protected Types

using ExprClassID = void (*)(void)

Protected Functions

Expr(ExprClassID classId)

Protected Attributes

ExprClassID classId
template<class T>
class ExprType : public popops::expr::Expr

Subclassed by popops::expr::BinaryOp, popops::expr::Cast, popops::expr::Const, popops::expr::PlaceHolder, popops::expr::TernaryOp, popops::expr::UnaryOp

Public Functions

ExprType()

Private Static Functions

void loc()
ExprClassID getClassId()

Friends

friend class Expr
class Floor : public popops::expr::UnaryOp

Public Functions

Floor(const Expr &a)
class Gt : public popops::expr::BinaryOp

Public Functions

Gt(const Expr &a, const Expr &b)
class Gte : public popops::expr::BinaryOp

Public Functions

Gte(const Expr &a, const Expr &b)
class Inv : public popops::expr::UnaryOp

Public Functions

Inv(const Expr &a)
class InvStdDevToVariance : public popops::expr::BinaryOp

Public Functions

InvStdDevToVariance(const Expr &a, const Expr &b)
class IsFinite : public popops::expr::UnaryOp

Public Functions

IsFinite(const Expr &a)
class IsInf : public popops::expr::UnaryOp

Public Functions

IsInf(const Expr &a)
class IsNaN : public popops::expr::UnaryOp

Public Functions

IsNaN(const Expr &a)
class Log : public popops::expr::UnaryOp

Public Functions

Log(const Expr &a)
class Log1p : public popops::expr::UnaryOp

Public Functions

Log1p(const Expr &a)
class Lt : public popops::expr::BinaryOp

Public Functions

Lt(const Expr &a, const Expr &b)
class Lte : public popops::expr::BinaryOp

Public Functions

Lte(const Expr &a, const Expr &b)
class Max : public popops::expr::BinaryOp

Public Functions

Max(const Expr &a, const Expr &b)
class Min : public popops::expr::BinaryOp

Public Functions

Min(const Expr &a, const Expr &b)
class Mul : public popops::expr::BinaryOp

Public Functions

Mul(const Expr &a, const Expr &b)
class Neg : public popops::expr::UnaryOp

Public Functions

Neg(const Expr &a)
class Not : public popops::expr::UnaryOp

Public Functions

Not(const Expr &a)
class NotEqual : public popops::expr::BinaryOp

Public Functions

NotEqual(const Expr &a, const Expr &b)
class Or : public popops::expr::BinaryOp

Public Functions

Or(const Expr &a, const Expr &b)
class PlaceHolder : public popops::expr::ExprType<PlaceHolder>

Public Functions

PlaceHolder(unsigned index)
unsigned getIndex() const
std::unique_ptr<Expr> clone() const override
std::string name(const std::vector<poplar::Tensor> &inputs) const override

Private Members

unsigned index
class Pow : public popops::expr::BinaryOp

Public Functions

Pow(const Expr &a, const Expr &b)
class Rem : public popops::expr::BinaryOp

Public Functions

Rem(const Expr &a, const Expr &b)
class Round : public popops::expr::UnaryOp

Public Functions

Round(const Expr &a)
class Rsqrt : public popops::expr::UnaryOp

Public Functions

Rsqrt(const Expr &a)
class Select : public popops::expr::TernaryOp

Public Functions

Select(const Expr &a, const Expr &b, const Expr &c)
class Shl : public popops::expr::BinaryOp

Public Functions

Shl(const Expr &a, const Expr &b)
class Shr : public popops::expr::BinaryOp

Public Functions

Shr(const Expr &a, const Expr &b)
class ShrSE : public popops::expr::BinaryOp

Public Functions

ShrSE(const Expr &a, const Expr &b)
class Sigmoid : public popops::expr::UnaryOp

Public Functions

Sigmoid(const Expr &a)
class Signum : public popops::expr::UnaryOp

Public Functions

Signum(const Expr &a)
class Sin : public popops::expr::UnaryOp

Public Functions

Sin(const Expr &a)
class Sqrt : public popops::expr::UnaryOp

Public Functions

Sqrt(const Expr &a)
class Square : public popops::expr::UnaryOp

Public Functions

Square(const Expr &a)
class Sub : public popops::expr::BinaryOp

Public Functions

Sub(const Expr &a, const Expr &b)
class Tan : public popops::expr::UnaryOp

Public Functions

Tan(const Expr &a)
class Tanh : public popops::expr::UnaryOp

Public Functions

Tanh(const Expr &a)
class TernaryOp : public popops::expr::ExprType<TernaryOp>

Subclassed by popops::expr::Clamp, popops::expr::Select

Public Functions

TernaryOp(TernaryOpType type, const Expr &a, const Expr &b, const Expr &c)
TernaryOpType getOpType() const
const Expr &getArg0() const
const Expr &getArg1() const
const Expr &getArg2() const
std::unique_ptr<Expr> clone() const override
std::string name(const std::vector<poplar::Tensor> &inputs) const override
std::string exprName(const std::vector<poplar::Tensor> &inputs) const

Private Members

TernaryOpType type
std::unique_ptr<Expr> a
std::unique_ptr<Expr> b
std::unique_ptr<Expr> c

Private Static Attributes

const std::vector<std::string> TernaryOpNames
class UnaryOp : public popops::expr::ExprType<UnaryOp>

Subclassed by popops::expr::Abs, popops::expr::Asin, popops::expr::BitwiseNot, popops::expr::Ceil, popops::expr::Cos, popops::expr::Exp, popops::expr::Expm1, popops::expr::Floor, popops::expr::Inv, popops::expr::IsFinite, popops::expr::IsInf, popops::expr::IsNaN, popops::expr::Log, popops::expr::Log1p, popops::expr::Neg, popops::expr::Not, popops::expr::Round, popops::expr::Rsqrt, popops::expr::Sigmoid, popops::expr::Signum, popops::expr::Sin, popops::expr::Sqrt, popops::expr::Square, popops::expr::Tan, popops::expr::Tanh

Public Functions

UnaryOp(UnaryOpType type, const Expr &a)
UnaryOpType getOpType() const
const Expr &getArg() const
std::unique_ptr<Expr> clone() const override
std::string name(const std::vector<poplar::Tensor> &inputs) const override
std::string exprName(const std::vector<poplar::Tensor> &inputs) const

Private Members

UnaryOpType type
std::unique_ptr<Expr> a

Private Static Attributes

const std::vector<std::string> UnaryOpNames
class VarianceToInvStdDev : public popops::expr::BinaryOp

Public Functions

VarianceToInvStdDev(const Expr &a, const Expr &b)

4.2.13. popops/ExprOp.hpp

namespace popops

Common functions, such as elementwise and reductions.

namespace expr

Enums

enum TernaryOpType

Values:

enumerator CLAMP
enumerator SELECT
enum BinaryOpType

Values:

enumerator ADD
enumerator ATAN2
enumerator BITWISE_AND
enumerator BITWISE_OR
enumerator BITWISE_XOR
enumerator BITWISE_XNOR
enumerator DIVIDE
enumerator EQUAL
enumerator GREATER_THAN_EQUAL
enumerator GREATER_THAN
enumerator INV_STD_DEV_TO_VARIANCE
enumerator LESS_THAN_EQUAL
enumerator LOGICAL_AND
enumerator LOGICAL_OR
enumerator LESS_THAN
enumerator MAXIMUM
enumerator MINIMUM
enumerator MULTIPLY
enumerator NOT_EQUAL
enumerator POWER
enumerator REMAINDER
enumerator SHIFT_LEFT
enumerator SHIFT_RIGHT
enumerator SHIFT_RIGHT_SIGN_EXTEND
enumerator SUBTRACT
enumerator VARIANCE_TO_INV_STD_DEV
enum UnaryOpType

Values:

enumerator ABSOLUTE
enumerator ASIN
enumerator BITWISE_NOT
enumerator CEIL
enumerator COS
enumerator COUNT_LEADING_ZEROS
enumerator EXPONENT
enumerator EXPONENT_MINUS_ONE
enumerator FLOOR
enumerator INVERSE
enumerator IS_FINITE
enumerator IS_INF
enumerator IS_NAN
enumerator LOGARITHM
enumerator LOGARITHM_ONE_PLUS
enumerator LOGICAL_NOT
enumerator NEGATE
enumerator POPCOUNT
enumerator SIGNUM
enumerator SIN
enumerator TAN
enumerator TANH
enumerator ROUND
enumerator SQRT
enumerator SQUARE
enumerator SIGMOID
enumerator RSQRT
enum BroadcastOpType

Values:

enumerator ADD
enumerator INV_STD_DEV_TO_VARIANCE
enumerator MULTIPLY
enumerator SUBTRACT
enumerator VARIANCE_TO_INV_STD_DEV
enumerator SCALED_ADD

4.2.14. popops/Fill.hpp

namespace popops

Common functions, such as elementwise and reductions.

Functions

void fill(poplar::Graph &graph, const poplar::Tensor &t, poplar::program::Sequence &prog, const void *fillValue, const poplar::TypeTraits &traits, const std::string &debugPrefix = "")
template<typename FillValueType>
void fill(poplar::Graph &graph, const poplar::Tensor &t, poplar::program::Sequence &prog, FillValueType fillValue, const std::string &debugPrefix = "")

Appends programs to prog which fills all elements of the Tensor t with a value of fillValue.

Note

The type of fillValue must be compatible with the element type of t.

Parameters
  • graph: The graph that the operation will be added to.

  • t: The tensor whose elements are to be filled.

  • prog: Poplar program sequence to append the operation onto.

  • fillValue: The value to fill t with.

  • debugPrefix: Name of the operation, for debugging.

4.2.15. popops/Gather.hpp

namespace popops

Common functions, such as elementwise and reductions.

Functions

poplar::Tensor createGatherInput(poplar::Graph &graph, const poplar::Type &type, const std::vector<std::size_t> &operandShape, unsigned axis, GatherParams params = {}, const std::string &name = "")

Create the input of the gather with only a single gather axis.

This is designed to spread the gather, and each dynamic slice within the gather, across the tiles evenly.

Return

A tensor with the desired shape.

Parameters
  • graph: The Poplar graph.

  • type: The data type of the required tensor.

  • operandShape: The desired shape of the input.

  • axis: The axis that will be gathered on.

  • params: The same parameters as used by the gather().

  • name: The name of the tensor.

poplar::Tensor gather(poplar::Graph &graph, const poplar::Tensor &input, const poplar::Tensor &indices, unsigned axis, poplar::program::Sequence &prog, GatherParams params, const std::string &debugPrefix = "")

The gather operation stitches together several slices (each slice at a potentially different runtime offset) of an input tensor.

To achieve the best performance, the input tensor should be created with createGatherInput.

Note

The indices are treated as offsets along the chosen axis. At this offset a slice of depth 1 in the axis dimension is taken.

Return

The gathered slices from the input with rank y + (x - 1).

Parameters
  • graph: The Poplar graph.

  • input: The tensor we are gathering from of rank x.

  • indices: Tensor containing the indices of the slices we gather of rank y.

  • axis: The axis to gather on, axis must be less than x.

  • prog: The program sequence to add this operation to.

  • params: Parameters for the form of the gather.

  • debugPrefix: A debug name for the operation.

poplar::Tensor createGatherInput(poplar::Graph &graph, const poplar::Type &type, const std::vector<std::size_t> &inputShape, const std::vector<std::size_t> &sliceSizes, std::vector<unsigned> startIndexMap, const std::string &name = "")

Create the input of the gather given a start index map.

This is designed to spread the gather, and each dynamic slice within the gather, across the tiles evenly.

Return

A tensor with the desired shape.

Parameters
  • graph: The Poplar graph.

  • type: The data type of the required tensor.

  • inputShape: The desired shape of the input.

  • sliceSizes: slice_sizes[i] is the bounds for the slice on dimension i.

  • startIndexMap: A map that describes how to map indices in startIndices to legal indices into input.

  • name: The name of the tensor.

poplar::Tensor gather(poplar::Graph &graph, const poplar::Tensor &input, const poplar::Tensor &indices, std::size_t indexVectorDim, const std::vector<std::size_t> &offsetDims, const std::vector<std::size_t> &sliceSizes, const std::vector<std::size_t> &collapsedSliceDims, const std::vector<unsigned> &startIndexMap, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

The gather operation stitches together several slices (each slice at a potentially different runtime offset) of an input tensor.

To achieve the best performance, the input tensor should be created with createGatherInput.

Example usage where we want to take 2 elements from a given tensor:

// The runtime defined input tensor
input = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}; // shape = {3, 3}

// The runtime defined indices tensor containing the coords we want to
// extract
indices = {{1, 1}, {2, 1}}; // shape = {2, 2}

// We want to extract elems at [1, 1] and [2, 1] from the input
// To achieve this we need to define the other parameters correctly

// We want to treat the rows of indices as coords into the input tensor
indexVectorDim = 1;

// None of the output dims will correspond to any of the input dims
offsetDims = {};

// We will be taking 1x1 slices to pick single elements
sliceSizes = {1, 1};

// We will collapse both dims of the input slices
collapsedSliceDims = {0, 1};

// An identity mapping between the indices coords and the input dims
startIndexMap = {0, 1};

// Perform the desired gather
result = gather(input,
                indices,
                indexVectorDim,
                offsetDims,
                sliceSizes
                collapsedSliceDims,
                startIndexMap) = {5, 8}; // shape = {2}
Note

When indexVectorDim == indices.rank(), the indices are interpreted as scalar values.

Note

This is a near direct port of https://www.tensorflow.org/xla/operation_semantics#gather from tensorflow/compiler/xla/service/gather_expander.cc

Return

The gathered slices from the input.

Parameters
  • graph: The Poplar graph.

  • input: The tensor we are gathering from.

  • indices: Tensor containing the starting indices of the slices we gather.

  • indexVectorDim: The dimension in indices that “contains” the starting indices.

  • offsetDims: The set of dimensions in the output shape that offset into a tensor sliced from input.

  • sliceSizes: slice_sizes[i] is the bounds for the slice on dimension i.

  • collapsedSliceDims: The set of dimensions in each slice that are collapsed away. These dimensions must have size 1.

  • startIndexMap: A map that describes how to map indices in startIndices to legal indices into input.

  • prog: The program sequence to add this operation to

  • debugPrefix: A debug name for the operation.

struct GatherParams

Public Functions

GatherParams() = default
GatherParams(std::size_t maxElementsPerTile_)

Public Members

std::size_t maxElementsPerTile = 65535

Suggested maximum number of elements to place on a tile.

This can be used to balance the gather across the IPUs.

4.2.16. popops/HostSliceTensor.hpp

namespace poplar
namespace popops

Common functions, such as elementwise and reductions.

Functions

IndicesAndTensor createHostSliceableTensor(poplar::Graph &graph, const poplar::Type &type, const std::vector<size_t> &shape, const bool isRead, const std::string &debugPrefix = "")
poplar::Tensor createHostTransferableTensor(poplar::Graph &graph, const poplar::Type &type, const std::vector<size_t> &shape, bool isRead, const std::string &debugPrefix = "")
struct IndicesAndTensor

Public Members

poplar::Tensor indices
poplar::Tensor tensor

4.2.17. popops/NaN.hpp

namespace popops

Common functions, such as elementwise and reductions.

Functions

poplar::Tensor hasNaN(poplar::Graph &graph, const poplar::Tensor &src, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Takes a tensor of any shape and type float or half and returns a new scalar bool tensor whose only element is true if any of the elements of the src tensor contained a NaN.

Parameters
  • graph: The graph to add the tensor and any vertices to.

  • src: The input tensor, the type must be floating point.

  • prog: Sequence to add programs to to perform the check.

  • debugPrefix: Optional debug prefix for programs/variables.

4.2.18. popops/Operation.hpp

namespace popops

Common functions, such as elementwise and reductions.

Enums

enum Operation

Type of operation to use in a reduction.

See Reduce.hpp for example usage.

Values:

enumerator ADD
enumerator MUL
enumerator MIN
enumerator MAX
enumerator LOGICAL_AND
enumerator LOGICAL_OR
enumerator SQUARE_ADD

Functions

std::istream &operator>>(std::istream &is, Operation &op)

Parse token from istream to Operation, valid input values are the stringified enum, e.g.

“ADD”, “MUL”, …

std::ostream &operator<<(std::ostream &os, const Operation &op)

Write Operation to ostream, value written is the stringified enum, e.g.

“ADD”, “MUL”, …

4.2.19. popops/Pad.hpp

namespace popops

Common functions, such as elementwise and reductions.

Functions

poplar::Tensor pad(poplar::Graph &graph, const poplar::Tensor &t, const std::vector<std::ptrdiff_t> &paddingLower, const std::vector<std::ptrdiff_t> &paddingUpper, float val = 0.0f, padding::MappingMethod mappingMethod = padding::MappingMethod::ZERO)

Return a tensor with constant padding added.

Return

The tensor with padding added.

Parameters
  • graph: The graph containing the tensor.

  • t: The tensor to pad.

  • paddingLower: A vector specifying the amount of padding to add at the start of each dimension. Negative padding truncates.

  • paddingUpper: A vector specifying the amount of padding to add at the end of each dimension. Negative padding truncates.

  • val: The input tensor will be padded with this value.

  • mappingMethod: The method that should be used to map added padding elements.

poplar::Tensor pad(poplar::Graph &graph, const poplar::Tensor &t, const std::vector<std::ptrdiff_t> &paddingLower, const std::vector<std::ptrdiff_t> &paddingUpper, int val, padding::MappingMethod mappingMethod = padding::MappingMethod::ZERO)
poplar::Tensor pad(poplar::Graph &graph, const poplar::Tensor &t, const std::vector<std::ptrdiff_t> &paddingLower, const std::vector<std::ptrdiff_t> &paddingUpper, const poplar::Tensor &val, padding::MappingMethod mappingMethod = padding::MappingMethod::ZERO)
poplar::Tensor pad(poplar::Graph &graph, const poplar::Tensor &t, std::ptrdiff_t paddingLower, std::ptrdiff_t paddingUpper, unsigned dim, float val = 0.0f, padding::MappingMethod mappingMethod = padding::MappingMethod::ZERO)

Return a tensor with constant padding added to one dimension.

Return

The tensor with padding added.

Parameters
  • t: The tensor to pad.

  • paddingLower: The amount of padding to add at the start of the dimension. Negative padding truncates.

  • paddingUpper: The amount of padding to add at the end of the dimension. Negative padding truncates.

  • dim: The dimension to pad.

  • val: The input tensor will be padded with this value.

  • mappingMethod: The method that should be used to map added padding elements.

poplar::Tensor pad(poplar::Graph &graph, const poplar::Tensor &t, std::ptrdiff_t paddingLower, std::ptrdiff_t paddingUpper, unsigned dim, int val, padding::MappingMethod mappingMethod = padding::MappingMethod::ZERO)
poplar::Tensor pad(poplar::Graph &graph, const poplar::Tensor &t, std::ptrdiff_t paddingLower, std::ptrdiff_t paddingUpper, unsigned dim, const poplar::Tensor &val, padding::MappingMethod mappingMethod = padding::MappingMethod::ZERO)
poplar::Tensor pad(const poplar::Tensor &t, const std::vector<std::ptrdiff_t> &paddingLower, const std::vector<std::ptrdiff_t> &paddingUpper, padding::Type type)

Return a tensor with numpy-style padding added.

Return

The tensor with padding added.

Parameters
  • t: The tensor to pad.

  • paddingLower: A vector specifying the amount of padding to add at the start of each dimension. Negative padding truncates.

  • paddingUpper: A vector specifying the amount of padding to add at the end of each dimension. Negative padding truncates.

  • type: The type of padding.

poplar::Tensor pad(const poplar::Tensor &t, std::ptrdiff_t paddingLower, std::ptrdiff_t paddingUpper, unsigned dim, padding::Type type)

Return a tensor with numpy-style padding added to one dimension.

Return

The tensor with padding added.

Parameters
  • t: The tensor to pad.

  • paddingLower: The amount of padding to add at the start of the dimension. Negative padding truncates.

  • paddingUpper: The amount of padding to add at the end of the dimension. Negative padding truncates.

  • dim: The dimension to pad.

namespace padding

Enums

enum Type

Padding types as per numpy.pad.

Values:

enumerator EDGE

Also known as nearest-neighbour padding, each new pad element has its value set to that of the pre-padded element nearest to it.

Any such nearest neighbour lies on the edge of the pre-padded tensor, hence the name.

enumerator REFLECT

The tensor is reflected outwards.

Specifically, a new pad element has its value set to that of the element which is an equal distance to the pad element’s nearest neighbour as the pad element, but in the opposite direction.

enum MappingMethod

Methods to map added padding elements to tiles.

Values:

enumerator NONE

Padding won’t be mapped.

enumerator ZERO

Set tile mapping of padding element to tile 0 for the graph.

enumerator EDGE

Set tile mapping of padding elements to match the nearest-neighbour element which lies on the edge of the tensor prior to padding.

Requires a non-empty tensor to be padded with a complete tile mapping.

4.2.20. popops/Rearrange.hpp

namespace popops

Common functions, such as elementwise and reductions.

namespace rearrange

Functions

bool canUseFastTranspose(const poplar::Target &target, const poplar::Type &type, unsigned numRows, unsigned numColumns, unsigned numTranspositions)

Determine if a fast transposition codelet may be used based on the given target/data type/no.

of rows/no. of columns.

Return

A boolean indicating whether or not the fast transposition codelets can be targeted based on the given parameters.

Parameters
  • target: The target the operation will be targeted at.

  • type: The data type of the tensor to transpose.

  • numRows: The no. of rows in each transposition to perform.

  • numColumns: The no. of columns in each transposition to perform.

void addTransposeVertices(poplar::Graph &graph, const poplar::ComputeSet &cs, const poplar::Type &dType, unsigned rows, unsigned cols, const poplar::Graph::TileToTensorMapping &mapping, std::function<std::pair<const poplar::Tensor, const poplar::Tensor>(size_t)> getInOut)

Transposes of a set of matrices stored on multiple tiles.

This adds all the needed vertices on the graph.

Parameters
  • graphcs: The graph and compute set to add the vertices to.

  • dTyperowscols: The type and dimensions of the matrices to be transposed, the same for all of them.

  • mapping: A vector with ‘number of tiles’ elements, where each element is a vector of intervals indicating which matrices to be transposed are mapped (possibly partially) on each tile.

  • getInOut: A function: pair<Tensor, Tensor> getInOut(size_t index), which, given as input an index inside the intervals specified in ‘mapping’, returns a std::pair of Tensors (in, out) which are the input and output matrix for the ‘index’ transposition. The ‘in’ and ‘out’ return values are 2D matrices, but they must be flattened to a single dimension.

poplar::Tensor partialTranspose(poplar::Graph &graph, const poplar::Tensor &in, const poplar::ComputeSet &cs, const std::string &debugPrefix = "")

Transpose the innermost pair of dimensions of the specified tensor, writing the results to a new tensor.

This function assumes order of the underlying storage matches the order of the elements in the tensor. This function is optimized for group sizes that are typical of the underlying memory layout of convolution activations / weights - it may be inefficient for other group sizes.

unsigned getMinimumRegroupGrainSize(const poplar::Type &type)

Get the smallest grouping we can transpose between for the given type using fast transposition codelets.

Return

The smallest size of grouping that can be efficiently transposed for the given type.

Parameters
  • type: The data type to be transposed.

poplar::Tensor regroupTensor(poplar::Graph &graph, const poplar::Tensor &t, poplar::program::Sequence &copies, const poplar::ComputeSet &transposeCS, const poputil::GroupingInfo &from, const poputil::GroupingInfo &to, const std::string &debugPrefix)

Insert copies or other operations into the given programs/compute sets to transform the grouping found on the given tensor from from to to.

This is a no-op for a one-dimensional tensor.

Return

A tensor with the contents of t but laid out such that it has the grouping specified in to.

Parameters
  • graph: The graph to add the operation to.

  • t: The tensor to regroup.

  • copies: A poplar sequence to add pre-arranging copies to.

  • transposeCS: A compute set that may or may not have vertices added to it to perform the regrouping operation.

  • from: A grouping that is applied to the given tensor t to rearrange from.

  • to: A grouping wanted on the returned tensor.

  • debugPrefix: An optional string to be prepended to any debug info.

poplar::Tensor regroupTensor(poplar::Graph &graph, const poplar::Tensor &t, std::vector<poplar::program::Copy> &copies, const poplar::ComputeSet &transposeCS, const poputil::GroupingInfo &from, const poputil::GroupingInfo &to, const std::string &debugPrefix)

Insert copies or other operations into the given programs/compute sets to transform the grouping found on the given tensor from from to to.

This is a no-op for a one-dimensional tensor.

Overload that takes a vector of Copy programs instead of a Sequence.

Return

A tensor with the contents of t but laid out such that it has the grouping specified in to.

Parameters
  • graph: The graph to add the operation to.

  • t: The tensor to regroup.

  • copies: A vector to add pre-arranging copies to.

  • transposeCS: A compute set that may or may not have vertices added to it to perform the regrouping operation.

  • from: A grouping that is applied to the given tensor t to rearrange from.

  • to: A grouping wanted on the returned tensor.

  • debugPrefix: An optional string to be prepended to any debug info.

poplar::Tensor regroupIfBeneficial(poplar::Graph &graph, const poplar::Tensor &in, const poplar::Tensor &ref, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

If possible and runtime efficient, add an operation to rearrange the given tensor in memory such that the grouping of the resulting tensor matches that of the reference tensor, or a factor of that grouping if it balances memory usage across the target better.

Return

A tensor with the contents of the given tensor in rearranged in memory to have a grouping matching ref.

Parameters
  • graph: The graph to add the operation to.

  • in: The tensor to maybe regroup.

  • ref: A reference tensor which will be introspected to find a grouping to apply to the returned tensor.

  • prog: A poplar sequence to add the regrouping operation to.

  • debugPrefix: An optional string to be prepended to any debug info.

poplar::Tensor regroupIfBeneficial(poplar::Graph &graph, const poplar::Tensor &in, const poplar::Tensor &ref, std::vector<poplar::program::Copy> &copies, poplar::ComputeSet transposeCS, const std::string &debugPrefix = "")

If possible and runtime efficient, add an operation to rearrange the given tensor in memory such that the grouping of the resulting tensor matches that of the reference tensor, or a factor of that grouping if it balances memory usage across the target better.

Overload that takes a vector of Copy programs instead of a Sequence.

Return

A tensor with the contents of the given tensor in rearranged in memory to have a grouping matching ref.

Parameters
  • graph: The graph to add the operation to.

  • in: The tensor to maybe regroup.

  • ref: A reference tensor which will be introspected to find a grouping to apply to the returned tensor.

  • copies: A vector to add pre-arranging copies to.

  • debugPrefix: An optional string to be prepended to any debug info.

poplar::Tensor regroupIfBeneficial(poplar::Graph &graph, const poplar::Tensor &in, std::size_t preferredGrouping, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

If possible and runtime efficient, add an operation to rearrange the given tensor in memory such that the resulting tensor has a grouping in the innermost dimension equivalent to, or a factor of the given preferred grouping if it balances memory usage across the target better.

Return

A tensor with the contents of the given tensor in rearranged in memory to have a grouping matching ref.

Parameters
  • graph: The graph to add the operation to.

  • in: The tensor to maybe regroup.

  • preferredGrouping: A size of grouping of the innermost dimension of the given tensor to regroup to.

  • prog: A poplar sequence to add the regrouping operation to.

  • debugPrefix: An optional string to be prepended to any debug info.

4.2.21. popops/Reduce.hpp

namespace popops

Common functions, such as elementwise and reductions.

Functions

poplar::Tensor reduce(poplar::Graph &graph, const poplar::Tensor &in, const poplar::Type &outType, const std::vector<std::size_t> &dims, ReduceParams params, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Apply a reduction operation to a tensor.

scale and update are currently only valid with the ADD or SQUARE_ADD operations.

Internally, this creates a new variable for the output then calls reduceWithOutput(). The type of the output will be outType.

The options parameter accepts the following:

  • accumType.interTile (float, half)

    The type to use for intermediate values between tiles.

  • accumType.inVertex (float, half)

    The type to use for intermediate values within a vertex.

If either of the above options are not set then the intermediate type will default to either the input tensor element type or float if the input is of type half and the reduction operation benefits from higher precision (for example, add).

The input and output types that are supported depend on the operation:

  • ADD, SQUARE_ADD, MUL: float->float, half->half, int->int, float->half, half->float

  • MAX, MIN: float->float, half->half, int->int

  • LOGICAL_AND, LOGICAL_OR: bool->bool

Parameters
  • graph: The graph to add the operation to

  • in: The tensor to be reduced

  • outType: The output type of the reduce operation

  • dims: The dimensions to reduce in

  • prog: The program sequence to add the operation to

  • debugPrefix: Identifying prefix for debugging information

poplar::Tensor reduce(poplar::Graph &graph, const poplar::Tensor &in, const std::vector<std::size_t> &dims, ReduceParams params, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void reduceWithOutput(poplar::Graph &graph, const poplar::Tensor &in, const poplar::Tensor &out, const std::vector<std::size_t> &dims, ReduceParams params, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

This is similar to reduce() but allows you to specify the output.

If the tile mapping of out is not complete it will be set. Otherwise it won’t be changed.

poplar::Tensor reduce(poplar::Graph &graph, const poplar::Tensor &in, const poplar::Type &outType, const std::vector<std::size_t> &dims, ReduceParams params, std::vector<poplar::ComputeSet> &css, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

These are alternate forms that add their vertices to a vector of compute sets instead of a Sequence.

The caller is expected to add each compute set to a Sequence (in an Execute) themselves, like this:

Sequence seq;
std::vector<ComputeSet> css;
auto A = reduce(..., css);
auto B = reduce(..., css);
for (const auto &cs : css) {
  seq.add(Execute(cs));

This allows you to do multiple reductions in parallel. Note that the reductions are not aware of each other, so it may be more efficient to concatenate tensors and do a single reduction instead if they have the same shape, operation, and input and output types.

poplar::Tensor reduce(poplar::Graph &graph, const poplar::Tensor &in, const std::vector<std::size_t> &dims, ReduceParams params, std::vector<poplar::ComputeSet> &css, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void reduceWithOutput(poplar::Graph &graph, const poplar::Tensor &in, const poplar::Tensor &out, const std::vector<std::size_t> &dims, ReduceParams params, std::vector<poplar::ComputeSet> &css, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
poplar::Tensor reduce(poplar::Graph &graph, const poplar::Tensor &in, const poplar::Type &outType, const std::vector<std::size_t> &dims, ReduceParams params, poplar::program::Sequence &prog, const std::string &debugPrefix, const poplar::OptionFlags &options, ReductionDebug *debug)

DEPRECATED - Use overloaded function without ReductionDebug parameter instead.

poplar::Tensor reduce(poplar::Graph &graph, const poplar::Tensor &in, const std::vector<std::size_t> &dims, ReduceParams params, poplar::program::Sequence &prog, const std::string &debugPrefix, const poplar::OptionFlags &options, ReductionDebug *debug)

DEPRECATED - Use overloaded function without ReductionDebug parameter instead.

void reduceWithOutput(poplar::Graph &graph, const poplar::Tensor &in, const poplar::Tensor &out, const std::vector<std::size_t> &dims, ReduceParams params, poplar::program::Sequence &prog, const std::string &debugPrefix, const poplar::OptionFlags &options, ReductionDebug *debug)

DEPRECATED - Use overloaded function without ReductionDebug parameter instead.

poplar::Tensor reduce(poplar::Graph &graph, const poplar::Tensor &in, const poplar::Type &outType, const std::vector<std::size_t> &dims, ReduceParams params, std::vector<poplar::ComputeSet> &css, const std::string &debugPrefix, const poplar::OptionFlags &options, ReductionDebug *debug)

DEPRECATED - Use overloaded function without ReductionDebug parameter instead.

poplar::Tensor reduce(poplar::Graph &graph, const poplar::Tensor &in, const std::vector<std::size_t> &dims, ReduceParams params, std::vector<poplar::ComputeSet> &css, const std::string &debugPrefix, const poplar::OptionFlags &options, ReductionDebug *debug)

DEPRECATED - Use overloaded function without ReductionDebug parameter instead.

void reduceWithOutput(poplar::Graph &graph, const poplar::Tensor &in, const poplar::Tensor &out, const std::vector<std::size_t> &dims, ReduceParams params, std::vector<poplar::ComputeSet> &css, const std::string &debugPrefix, const poplar::OptionFlags &options, ReductionDebug *debug)

DEPRECATED - Use overloaded function without ReductionDebug parameter instead.

struct ReduceParams
#include <Reduce.hpp>

A reduce operation can optionally scale the output, and can also be an “update”, i.e.

out += reduce(in) rather than out = reduce(in).

ReduceParams stores that information, as well as the basic operation being performed (add, mul, etc).

Public Functions

ReduceParams() = default
ReduceParams(popops::Operation op, bool update = false)
ReduceParams(popops::Operation op, bool update, poplar::Tensor scale)
ReduceParams(popops::Operation op, float constantScale, bool update = false) = delete

Public Members

popops::Operation op
bool update
bool useScale
poplar::Tensor scale

4.2.22. popops/ScaledAdd.hpp

namespace popops

Common functions, such as elementwise and reductions.

Enums

enum ScaledAddSpecialisation

Values:

enumerator DEFAULT
enumerator X_MINUS_AX_PLUS_BY

Functions

void scaledAddTo(poplar::Graph &graph, poplar::Tensor A, poplar::Tensor B, float scaleB, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Add the elements of one tensor multiplied by a scalar to another tensor.

Performs the calculations A += scaleB * B

The operation is performed after casting B to the type of A.

Scaled add options

  • optimizeForSpeed (true, false) [=false]

    The scaledAdd vertices default to being optimized to aid memory allocation. To optimise them for speed instead, set this option to true.

  • scaleFloatToHalfTolerance (double) [=1e-6]

    Where the tensors A, B are of type half and a scaleB is provided as a float or a tensor of type float, it is possible to to implement the scaledAddTo in half precision if scaleB can be cast to half precision with acceptable accuracy. Otherwise full precision arithmetic can be used internally, but at the cost of speed. Floating point arithmetic will be selected if the relative error in casting is greater than the relative tolerance.

    Only applies to ScaledAddTo with scaleB.

Parameters
  • graph: The Poplar graph.

  • A: The destination tensor.

  • B: The second tensor to add elements from (must be of the same shape as A).

  • scaleB: The scalar to multiply elements of B with before addition.

  • prog: A sequence program to which the code performing the add will be appended.

  • debugPrefix: A debug prefix to add to any tensors/compute set names.

  • options: A list of flags to control optimizations.

void scaledAddTo(poplar::Graph &graph, poplar::Tensor A, poplar::Tensor B, poplar::Tensor scaleB, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Add the elements of one tensor each multiplied by a (scalar) tensor to another tensor.

Performs the calculations A += scaleB * B

The operation is performed after casting scaleB and B to the type of A.

Parameters
  • graph: The Poplar graph.

  • A: The destination tensor.

  • B: The second tensor to add elements from (must be of the same shape as A).

  • scaleB: The scalar tensor to multiply elements of B with before addition.

  • prog: A sequence program to which the code performing the add will be appended.

  • debugPrefix: A debug prefix to add to any tensors/compute set names.

  • options: A list of flags to control optimizations. See scaledAddTo().

void scaledSubtractFrom(poplar::Graph &graph, poplar::Tensor A, poplar::Tensor B, float scaleB, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Subtract the elements of one tensor multiplied by a scalar from another tensor.

Performs the calculations A -= scaleB * B

The operation is performed after casting B to type A.

Parameters
  • graph: The Poplar graph.

  • A: The destination tensor.

  • B: The second tensor providing the elements to subtract (must be of the same shape as A).

  • scaleB: The scalar to multiply elements of B with before subtraction.

  • prog: A sequence program to which the code performing the add will be appended.

  • debugPrefix: A debug prefix to add to any tensors/compute set names.

  • options: A list of flags to control optimizations. See scaledAddTo().

void scaledSubtractFrom(poplar::Graph &graph, poplar::Tensor A, poplar::Tensor B, poplar::Tensor scaleB, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Subtract the elements of one tensor each multiplied by a (scalar) tensor from another tensor.

Performs the calculations A -= scaleB * B

The operation is performed after casting scaleB, and B to the type of A.

Parameters
  • graph: The Poplar graph.

  • A: The destination tensor.

  • B: The second tensor providing the elements to subtract (must be of the same shape as A).

  • scaleB: The scalar tensor to multiply elements of B with before subtraction.

  • prog: A sequence program to which the code performing the add will be appended.

  • debugPrefix: A debug prefix to add to any tensors/compute set names.

  • options: A list of flags to control optimizations. See scaledAddTo().

void scaledAddTo(poplar::Graph &graph, poplar::Tensor A, poplar::Tensor scaleA, poplar::Tensor B, poplar::Tensor scaleB, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Scale the elements of one tensor and add the scaled elements of another tensor to it.

The two scaling factors are (scalar) tensors.

Performs the calculations A = scaleA * A + scaleB * B

The operation is performed after casting scaleA, scaleB and B to the type of A.

Parameters
  • graph: The Poplar graph.

  • A: The destination tensor.

  • scaleA: The scalar tensor to multiply elements of A with before addition.

  • B: The second tensor to add elements from (must be of the same shape as A).

  • scaleB: The scalar tensor to multiply elements of B with before addition.

  • prog: A sequence program to which the code performing the add will be appended.

  • debugPrefix: A debug prefix to add to any tensors/compute set names.

  • options: A list of flags to control optimizations. See scaledAddTo().

void scaledAddTo(poplar::Graph &graph, poplar::Tensor A, poplar::Tensor scaleA, poplar::Tensor B, poplar::Tensor scaleB, poplar::program::Sequence &prog, const ScaledAddSpecialisation speciality, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Scale the elements of one tensor and add the scaled elements of another tensor to it.

The two scaling factors are (scalar) tensors.

Performs the calculations A = scaleA' * A + scaleB * B where scaleA’ is a function of scaleA specified by the “speciality” option.

The operation is performed after casting scaleA, scaleB and B to the type of A.

Parameters
  • graph: The Poplar graph.

  • A: The destination tensor.

  • scaleA: The scalar tensor to multiply elements of A with before addition.

  • B: The second tensor to add elements from (must be of the same shape as A).

  • scaleB: The scalar tensor to multiply elements of B with before addition.

  • prog: A sequence program to which the code performing the add will be appended.

  • speciality: Choice of ScaledAdd expression formulation

  • debugPrefix: A debug prefix to add to any tensors/compute set names.

  • options: A list of flags to control optimizations. See scaledAddTo().

void scaledAddTo(poplar::Graph &graph, poplar::Tensor A, float scaleA, poplar::Tensor B, float scaleB, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Scale the elements of one tensor and add the scaled elements of another tensor to it.

The two scaling factors are constants.

Performs the calculations A = scaleA * A + scaleB * B

If A and B are of different types, B is first cast to the type of A and the operation performed.

Parameters
  • graph: The Poplar graph.

  • A: The destination tensor.

  • scaleA: The constant to multiply elements of A with before addition.

  • B: The second tensor to add elements from (must be of the same shape as A).

  • scaleB: The constant to multiply elements of B with before addition.

  • prog: A sequence program to which the code performing the add will be appended.

  • debugPrefix: A debug prefix to add to any tensors/compute set names.

  • options: A list of flags to control optimizations. See scaledAddTo().

void scaledAddTo(poplar::Graph &graph, poplar::Tensor A, float scaleA, poplar::Tensor B, float scaleB, poplar::program::Sequence &prog, const ScaledAddSpecialisation speciality, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Scale the elements of one tensor and add the scaled elements of another tensor to it.

The two scaling factors are constants.

Performs the calculations A = scaleA' * A + scaleB * B where scaleA’ is a function of scaleA specified by the “speciality” option.

If A and B are of different types, B is first cast to the type of A and the operation performed.

Parameters
  • graph: The Poplar graph.

  • A: The destination tensor.

  • scaleA: The constant to multiply elements of A with before addition.

  • B: The second tensor to add elements from (must be of the same shape as A).

  • scaleB: The constant to multiply elements of B with before addition.

  • prog: A sequence program to which the code performing the add will be appended.

  • speciality: Choice of ScaledAdd expression formulation

  • debugPrefix: A debug prefix to add to any tensors/compute set names.

  • options: A list of flags to control optimizations. See scaledAddTo().

void scaledSubtractFrom(poplar::Graph &graph, poplar::Tensor A, poplar::Tensor scaleA, poplar::Tensor B, poplar::Tensor scaleB, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Scale the elements of one tensor and subtract the scaled elements of another tensor to it.

The two scaling factors are (scalar) tensors.

Performs the calculations A = scaleA * A - scaleB * B

The operation is performed after casting scaleA, scaleB and B to the type of A.

Parameters
  • graph: The poplar graph.

  • A: The destination tensor.

  • scaleA: The scalar tensor to multiply elements of A with before subtraction.

  • B: The second tensor to subtract elements from (must be of the same shape as A).

  • scaleB: The scalar tensor to multiply elements of B with before subtraction.

  • prog: A sequence program to which the code performing the subtract will be appended.

  • debugPrefix: A debug prefix to add to any tensors/compute set names.

  • options: A list of flags to control optimizations. See scaledAddTo().

void scaledSubtractFrom(poplar::Graph &graph, poplar::Tensor A, float scaleA, poplar::Tensor B, float scaleB, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Scale the elements of one tensor and subtract the scaled elements of another tensor to it.

The two scaling factors are constants.

Performs the calculations A = scaleA * A - scaleB * B

If A and B are of different types, B is first cast to the type of A and the operation performed.

Parameters
  • graph: The poplar graph.

  • A: The destination tensor.

  • scaleA: The constant to multiply elements of A with before subtraction.

  • B: The second tensor to subtract elements from (must be of the same shape as A).

  • scaleB: The constant to multiply elements of B with before subtraction.

  • prog: A sequence program to which the code performing the subtract will be appended.

  • debugPrefix: A debug prefix to add to any tensors/compute set names.

  • options: A list of flags to control optimizations. See scaledAddTo().

4.2.23. popops/Scatter.hpp

namespace popops

Common functions, such as elementwise and reductions.

Typedefs

using UpdateComputationFunc = std::function<poplar::Tensor(poplar::Graph&, poplar::Tensor&, poplar::Tensor&, poplar::program::Sequence&)>

Functions

void scatter(poplar::Graph &graph, const poplar::Tensor &operand, const poplar::Tensor &indices, const poplar::Tensor &updates, std::size_t indexVectorDim, std::vector<unsigned> updateWindowDims, std::vector<std::size_t> insertWindowDims, std::vector<unsigned> scatterDimsToOperandDims, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

The scatter operation generates a result which is the value of the input array operand, with several slices (at indices specified by scatter_indices) updated with the values in updates.

Note

This is a near direct port of https://www.tensorflow.org/xla/operation_semantics#scatter from tensorflow/compiler/xla/service/scatter_expander.cc

Parameters
  • graph: The Poplar graph.

  • operand: Array to be scattered into.

  • indices: Array containing the starting indices of the slices that must be scattered to.

  • updates: Array containing the values that must be used for scattering.

  • indexVectorDim: The dimension in scatter_indices that contains the starting indices.

  • updateWindowDims: The set of dimensions in updates shape that are window dimensions.

  • insertWindowDims: The set of window dimensions that must be inserted into updates shape.

  • scatterDimsToOperandDims: A dimensions map from the scatter indices to the operand index space. This array is interpreted as mapping i to scatterDimsToOperandDims[i] . It has to be one-to-one and total.

  • prog: The program to be extended.

  • debugPrefix: The prefix prepended to debugging info.

void scatter(poplar::Graph &graph, const poplar::Tensor &operand, const poplar::Tensor &indices, const poplar::Tensor &updates, std::size_t indexVectorDim, std::vector<unsigned> updateWindowDims, std::vector<std::size_t> insertWindowDims, std::vector<unsigned> scatterDimsToOperandDims, UpdateComputationFunc &updateComputation, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Similar to the above scatter, but allows for a user defined update computation.

This computation is used to combine the existing values in the input tensor and the updates during the scatter.

Note

The first tensor parameter that is passed into the updateComputation will always be the current value from the operand tensor and the second parameter will always be the value from the updates tensor. This is important specifically for cases when the updateComputation is not commutative.

Parameters
  • updateComputation: Computation to be used for combining the existing values in the input tensor and the updates during scatter.

4.2.24. popops/SelectScalarFromRows.hpp

namespace popops

Common functions, such as elementwise and reductions.

Functions

poplar::Tensor selectScalarFromRows(poplar::Graph &graph, const poplar::Tensor &params, const poplar::Tensor &indices, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

For each row in the 2D tensor params, select a single scalar value.

Aggregate the resulting scalars into a 1D tensor.

The size of the

indices tensor must be equal to the size of dimension-0 of params. The ith element of indices represents an index in the ith row of the params tensor.
Parameters
  • params: A 2D tensor, element-type must be either float or half

  • indices: A 1D tensor, element-type must be unsigned integer.

Return

A 1D tensor containing in the ith position the scalar params[indices[i]].

If ith element of the

indices tensor is less than 0 or greater than the width of params then a NaN is stored into the ith element of the output. If the ith element of the indices tensor is equal to MASKED_LABEL_CODE then zero is stored into the ith element of the output.

4.2.25. popops/Sort.hpp

namespace popops

Common functions, such as elementwise and reductions.

Functions

poplar::Tensor sort(poplar::Graph &graph, const poplar::Tensor &t, unsigned dim, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Sort a given tensor along the given dimension.

This will return a tensor that is a permutation of the input tensor with the property that all 1D slices in the chosen dimensions are in ascending order.

This aims to match TensorFlow’s XLA sort https://www.tensorflow.org/xla/operation_semantics#sort

Return

A tensor which is a permutation of t such that all elements in the given dimension are in order.

Parameters
  • graph: The Poplar graph.

  • t: The source tensor.

  • dim: The dimension to sort on.

  • prog: The program to be extended.

  • debugPrefix: The prefix prepended to debugging info.

void sortInPlace(poplar::Graph &graph, const poplar::Tensor &t, unsigned dim, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

In-place sort a given tensor along the given dimension.

This will permute the input tensor so that all 1D slices in the chosen dimensions are in ascending order.

Parameters
  • graph: The Poplar graph.

  • t: The source tensor to be sorted.

  • dim: The dimension to sort on.

  • prog: The program to be extended.

  • debugPrefix: The prefix prepended to debugging info.

poplar::Tensor sortKeyValue(poplar::Graph &graph, const poplar::Tensor &k, const poplar::Tensor &v, unsigned dim, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Sort a given tensor by a key tensor along the given dimension.

This will return a tensor that is a permutation of the input value tensor with the property that all 1D slices in the chosen dimensions are in ascending order with respect to the key tensor.

This aims to match TensorFlow’s XLA sort https://www.tensorflow.org/xla/operation_semantics#sort

Return

A tensor which is a permutation of v such that it is in order with respect to the tensor k in the given dimension.

Note

If k and v alias, the result is undefined.

Parameters
  • graph: The Poplar graph.

  • k: The key tensor to sort on.

  • v: The value tensor to be sorted.

  • dim: The dimension to sort on.

  • prog: The program to be extended.

  • debugPrefix: The prefix prepended to debugging info.

void sortKeyValueInPlace(poplar::Graph &graph, const poplar::Tensor &k, const poplar::Tensor &v, unsigned dim, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

In-place sort a given tensor by a key tensor along the given dimension.

This will permute the key and value tensors so that all 1D slices in the chosen dimensions are in ascending order with respect to the key tensor.

Note

the ‘k’ tensor is also sorted by this in-place operation.

Note

If the k tensor and the v tensor alias, the result is undefined.

Parameters
  • graph: The Poplar graph.

  • k: The key tensor to sort on.

  • v: The value tensor to be sorted.

  • dim: The dimension to sort on.

  • prog: The program to be extended.

  • debugPrefix: The prefix prepended to debugging info.

4.2.26. popops/UpdateScalarInRows.hpp

namespace popops

Common functions, such as elementwise and reductions.

Functions

void updateScalarInRows(poplar::Graph &graph, const poplar::Tensor &params, const poplar::Tensor &indices, poplar::program::Sequence &program, const std::string &debugPrefix = "")

Update in-place one scalar per row of the tensor params.

For each row, the index of the value to update is specified by the tensor indices. If the index from indices is equal to MASKED_LABEL_CODE then no update is carried out.

Pseudo-code for each row r if indices[r] != MASKED_LABEL_CODE params[r][indices[r]] = params[r][indices[r]] - 1.f

If the ith index is less than 0 or greater than width then the whole row of the param tensor is set to NAN. This is to match the interface of the backward phase of tf.nn.sparse_softmax_cross_entropy_with_logits (see the link above).

Parameters
  • params: The 2D tensor to be updated, element-type must be either float or half.

  • indices: 1D tensor, element-type must be unsigned integer.

4.2.27. popops/Zero.hpp

namespace popops

Common functions, such as elementwise and reductions.

Functions

void zero(poplar::Graph &graph, poplar::Tensor t, const std::vector<poplar::Interval> &tileRegions, unsigned tile, poplar::ComputeSet zeroCS)

Appends vertices to zeroCS which zeroes elements in tileRegions of t which reside on tile tile.

Parameters
  • graph: The graph that the operation will be added to.

  • t: The tensor whose elements are to be set to zero.

  • tileRegions: Region mapping of the tensor on tile.

  • tile: Tile which the regions relate to.

  • zeroCS: Compute set to add the operation into.

void zero(poplar::Graph &graph, const poplar::Tensor &t, unsigned tile, poplar::ComputeSet zeroCS)

Appends vertices to zeroCS which zeroes all elements of t which reside on tile tile.

Parameters
  • graph: The graph that the operation will be added to.

  • t: The tensor whose elements are to be set to zero.

  • tile: Tile on which the tensor is mapped to.

  • zeroCS: Compute set to add the operation into.

void zero(poplar::Graph &graph, const poplar::Tensor &t, const std::vector<std::vector<poplar::Interval>> &mapping, poplar::ComputeSet zeroCS)

Appends vertices to zeroCS which zeroes elements in mapping of t which reside on tiles represented with mapping.

Parameters
  • graph: The graph that the operation will be added to.

  • t: The tensor whose elements are to be set to zero.

  • mapping: The tensor’s region mapping per tile. Each element describes a region mapping of a tile (ordered). i.e. mapping[0] -> tile 0’s region mapping for t.

  • zeroCS: Compute set to add the operation into.

void zero(poplar::Graph &graph, const poplar::Tensor &t, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Appends programs to prog which zeroes all elements of the Tensor t.

Parameters
  • graph: The graph that the operation will be added to.

  • t: The tensor whose elements are to be set to zero.

  • prog: Poplar program sequence to append the operation onto.

  • debugPrefix: Name of the operation, for debugging.

4.3. Linear algebra functions (poplin)

Linear algebra functions (matrix multiplications, convolutions).

4.3.1. poplin/ConvParams.hpp

template<>
struct std::hash<poplin::ConvParams::InputTransform>

Public Functions

std::size_t operator()(const poplin::ConvParams::InputTransform &it) const
template<>
struct std::hash<poplin::ConvParams::OutputTransform>

Public Functions

std::size_t operator()(const poplin::ConvParams::OutputTransform &ot) const
template<>
struct std::hash<poplin::ConvParams>

Public Functions

std::size_t operator()(const poplin::ConvParams &params) const
namespace poplin

Linear algebra functions.

A collection of utility functions to assist calculation of input/output ranges when moving a 2-dimensional kernel over a larger 2-dimensional space (for example in convolution or pooling layers)

Functions

std::ostream &operator<<(std::ostream &os, const ConvParams &p)
std::size_t hash_value(const ConvParams::InputTransform &it)
std::size_t hash_value(const ConvParams::OutputTransform &ot)
struct ConvParams

Public Functions

ConvParams() = default
ConvParams(poplar::Type dataType, std::size_t batchSize, std::vector<std::size_t> inputFieldShape, std::vector<std::size_t> kernelShape, std::size_t inputChannels, std::size_t outputChannels, std::size_t numConvGroups)
ConvParams(poplar::Type inputType, poplar::Type outputType, std::size_t batchSize, std::vector<std::size_t> inputFieldShape, std::vector<std::size_t> kernelShape, std::size_t inputChannels, std::size_t outputChannels, std::size_t numConvGroups)
ConvParams(poplar::Type inputType, poplar::Type outputType, std::size_t batchSize, std::vector<std::size_t> inputFieldShape, std::vector<std::size_t> kernelShape, std::size_t inputChannels, std::size_t outputChannels, std::size_t numConvGroups, InputTransform inputTransform, InputTransform kernelTransform, OutputTransform outputTransform)
std::size_t getUntransformedOutputSize(unsigned dim) const

Return the size of the output of the convolution operation, before output transformations are applied.

std::size_t getOutputSize(unsigned dim) const

Return the size of the output.

std::size_t getNumOutputChansPerConvGroup() const
std::size_t getNumOutputChans() const
std::size_t getInputSize(unsigned dim) const
std::size_t getNumInputChansPerConvGroup() const
std::size_t getNumInputChans() const
std::size_t getNumConvGroups() const
std::size_t getNumFieldDims() const
std::vector<std::size_t> getInputFieldShape() const
std::vector<std::size_t> getKernelShape() const
std::size_t getBatchSize() const
unsigned getTruncatedInputSize(unsigned dim) const

Return the size of input in the specified dimension after truncation.

unsigned getTruncatedKernelSize(unsigned dim) const

Return the size of kernel in the specified dimension after truncation.

unsigned getTransformedInputSize(unsigned dim) const

Return the size of input in the specified dimension after applying the input transforms.

unsigned getTransformedKernelSize(unsigned dim) const

Return the size of kernel in the specified dimension after applying the kernel transforms.

std::vector<size_t> getOutputFieldShape() const

Returns the shape of the output field.

void validate() const
ConvParams canonicalize() const

Public Members

poplar::Type inputType
poplar::Type outputType
std::size_t batchSize

batch size (B)

std::vector<std::size_t> inputFieldShape

Input field shape for each channel in a batch.

std::vector<std::size_t> kernelShape

kernel shape for each channel

std::size_t inputChannelsPerConvGroup

input channels per conv group (Ci)

std::size_t outputChannelsPerConvGroup

output channels per group (Co)

std::size_t numConvGroups

number of groups in a grouped convolution (G).

The input and output channels are divided by G such that G kernels are applied to an input tensors of size {B, {dims}, Ci/G} to produce output tensors of size {B, O{dims}, Co/G}. O{dims} is the output field dimensions

InputTransform inputTransform

The transform applied to the input.

InputTransform kernelTransform

The transform applied to the kernel.

OutputTransform outputTransform

The transform applied to the output.

Friends

friend bool operator<(const ConvParams &a, const ConvParams &b)
friend bool operator==(const ConvParams &a, const ConvParams &b)
friend bool operator!=(const ConvParams &a, const ConvParams &b)
struct InputTransform

Public Functions

InputTransform() = default
InputTransform(const std::size_t size)
InputTransform(std::vector<unsigned> truncationLower, std::vector<unsigned> truncationUpper, std::vector<unsigned> dilation, std::vector<unsigned> paddingLower, std::vector<unsigned> paddingUpper, std::vector<bool> flip)

Public Members

std::vector<unsigned> truncationLower

Amount each spatial dimension is truncated before dilation.

std::vector<unsigned> truncationUpper
std::vector<unsigned> dilation

Dilation applied to each spatial dimensions after truncation and before padding.

Dilation is performed by placing zeroed elements between the elements of the field.

std::vector<unsigned> paddingLower

Padding applied to each spatial dimension after dilation and before flipping.

std::vector<unsigned> paddingUpper
std::vector<bool> flip

Whether to flip each spatial dimension.

Flipping is applied after padding.

Friends

friend bool operator<(const InputTransform &a, const InputTransform &b)
friend bool operator==(const InputTransform &a, const InputTransform &b)
friend bool operator!=(const InputTransform &a, const InputTransform &b)
struct OutputTransform

Public Functions

OutputTransform() = default
OutputTransform(const std::size_t size)
OutputTransform(std::vector<unsigned> truncationLower, std::vector<unsigned> truncationUpper, std::vector<unsigned> striding, std::vector<unsigned> paddingLower, std::vector<unsigned> paddingUpper)

Public Members

std::vector<unsigned> truncationLower

Amount each spatial dimension is truncated before striding.

std::vector<unsigned> truncationUpper
std::vector<unsigned> stride

Striding applied to each spatial dimension after truncation and before padding.

std::vector<unsigned> paddingLower

Padding applied to each spatial dimension after striding.

std::vector<unsigned> paddingUpper

Friends

friend bool operator<(const OutputTransform &a, const OutputTransform &b)
friend bool operator==(const OutputTransform &a, const OutputTransform &b)
friend bool operator!=(const OutputTransform &a, const OutputTransform &b)
namespace std
template<> ConvParams >

Public Functions

std::size_t operator()(const poplin::ConvParams &params) const
template<> InputTransform >

Public Functions

std::size_t operator()(const poplin::ConvParams::InputTransform &it) const
template<> OutputTransform >

Public Functions

std::size_t operator()(const poplin::ConvParams::OutputTransform &ot) const

4.3.2. poplin/ConvUtil.hpp

namespace poplin

Linear algebra functions.

A collection of utility functions to assist calculation of input/output ranges when moving a 2-dimensional kernel over a larger 2-dimensional space (for example in convolution or pooling layers)

Functions

unsigned getDilatedSize(unsigned size, unsigned dilation)

Return the output size when the specified dilation is applied to an input of the specified size.

unsigned getInputIndex(unsigned dim, unsigned outputIndex, unsigned kernelIndex, const ConvParams &params)

Return the index of the input element that is multiplied by the specified kernel index to produce the specified output.

Return ~0U if there is no such input element.

unsigned getKernelIndex(unsigned dim, unsigned outputIndex, unsigned inputIndex, const ConvParams &params)

Return the index of the kernel element that is multiplied by the specified input index to produce the specified output.

Return ~0U if there is no such kernel element.

std::pair<unsigned, unsigned> getOutputRangeForKernelIndex(unsigned dim, std::pair<unsigned, unsigned> outputRange, unsigned kernelIndex, const ConvParams &params)

Given an output range, return the subset whose calculation involves the specified kernel index.

std::pair<unsigned, unsigned> getOutputRangeForInputIndex(unsigned dim, std::pair<unsigned, unsigned> outputRange, unsigned inputIndex, const ConvParams &params)

Given an output range, return the subset whose calculation involves the specified input.

std::pair<unsigned, unsigned> getOutputRangeForKernelRange(unsigned dim, std::pair<unsigned, unsigned> outputRange, std::pair<unsigned, unsigned> kernelIndexRange, const ConvParams &params)

Given an output range, return the subset whose calculation involves the specified range of kernel indicies.

std::pair<unsigned, unsigned> getOutputRangeForInputRange(unsigned dim, std::pair<unsigned, unsigned> outputRange, std::pair<unsigned, unsigned> inputRange, const ConvParams &params)

Given an output range, return the subset whose calculation involves the specified range of input indicies.

std::pair<unsigned, unsigned> getInputRange(unsigned dim, std::pair<unsigned, unsigned> outputRange, unsigned kernelIndex, const ConvParams &params)

Return the input range that is associated with the specified kernel index when calculating the specified output range.

std::pair<unsigned, unsigned> getKernelRange(unsigned dim, std::pair<unsigned, unsigned> outputRange, unsigned inputIndex, const ConvParams &params)

Return the kernel range that is associated with the specified input index when calculating the specified output range.

std::pair<unsigned, unsigned> getInputRange(unsigned dim, std::pair<unsigned, unsigned> outputRange, std::pair<unsigned, unsigned> kernelIndexRange, const ConvParams &params)

Return the input range that is associated with the specified kernel index range when calculating the specified output range.

std::pair<unsigned, unsigned> getKernelRange(unsigned dim, std::pair<unsigned, unsigned> outputRange, std::pair<unsigned, unsigned> inputRange, const ConvParams &params)

Return the kernel range that is associated with the specified input index range when calculating the specified output range.

std::pair<unsigned, unsigned> getInputRange(unsigned dim, unsigned outputIndex, std::pair<unsigned, unsigned> kernelIndexRange, const ConvParams &params)
std::pair<unsigned, unsigned> getInputRange(unsigned dim, unsigned outputIndex, const ConvParams &params)
std::pair<unsigned, unsigned> getInputRange(unsigned dim, std::pair<unsigned, unsigned> outputRange, const ConvParams &params)
ConvParams getGradientParams(const ConvParams &params)

Given a set of parameters, return the set of params that represent the convolution to be applied to the output gradients to get the input gradients (provided the weights have been transposed in the channel axes and flipped in the spatial axes).

ConvParams getWeightUpdateParams(const ConvParams &fwdParams)

Given a set of convolution parameters, return the set of params that represent the convolution to be applied to the output gradients to get the weight update gradients.

4.3.3. poplin/Convolution.hpp

namespace poplin

Linear algebra functions.

A collection of utility functions to assist calculation of input/output ranges when moving a 2-dimensional kernel over a larger 2-dimensional space (for example in convolution or pooling layers)

Typedefs

using ConvPlanParams = std::tuple<const poplar::Target*, const ConvParams, const poplar::OptionFlags*>

Functions

uint64_t getFwdFlops(const ConvParams &params)

Calculate minimum number of floating point operations required to perform the forward pass convolution given a set of params.

uint64_t getBwdFlops(const ConvParams &params)

Calculate minimum number of floating point operations required to perform the backward pass convolution given a set of params.

uint64_t getWuFlops(const ConvParams &params)

Calculate minimum number of floating point operations required to perform the weight update pass convolution given a set of params.

double getFwdPerfectCycleCount(const poplar::Graph &graph, const ConvParams &params)

Calculate the number of cycles to perform the forward pass assuming maximal utilisation of target hardware performing the minimum number of floating point operations.

This takes into account the number of tiles available and vectorization support on the target.

This is an optimistic number useful for estimating efficiency. cycleCount = getFwdFlops() / maximumHardwareVectorization

Parameters
  • graph: Provides target the convolution will run on.

  • params: Description of convolution.

double getBwdPerfectCycleCount(const poplar::Graph &graph, const ConvParams &params)

Calculate the number of cycles to perform the backward pass assuming maximal utilisation of target hardware performing the minimum number of floating point operations.

This takes into account the number of tiles available and vectorization support on the target.

This is an optimistic number useful for estimating efficiency. cycleCount = getBwdFlops() / maximumHardwareVectorization

Parameters
  • graph: Provides target the convolution will run on.

  • params: Description of convolution.

double getWuPerfectCycleCount(const poplar::Graph &graph, const ConvParams &params)

Calculate the number of cycles to perform the weight update pass assuming maximal utilisation of target hardware performing the minimum number of floating point operations.

This takes into account the number of tiles available and vectorization support on the target.

This is an optimistic number useful for estimating efficiency. cycleCount = getWuFlops() / maximumHardwareVectorization

Parameters
  • graph: Provides target the convolution will run on.

  • params: Description of convolution.

poplar::Tensor createWeights(poplar::Graph &graph, const ConvParams &params, const std::string &name, const poplar::OptionFlags &options = {}, PlanningCache *cache = nullptr)

Create a weight tensor suitable for use with convolution()

The shape of the tensor will be [convGroups x outChansPerConvGroup x inChansPerConvGroup x H x W]

Convolution options

  • availableMemoryProportion Decimal between 0 and 1 (inclusive) [=0.6]

    The proportion of tile memory to be made available as temporary memory for this convolution. This constraint will be ignored (with a warning) if a conforming plan cannot be found and then the planner will replan for the smallest memory usage possible. Less temporary memory will generally result in a convolution that takes more cycles to complete. However, because always live memory (like code and vertex state) is not tracked by the planner, a convolution using less temporary memory may use more memory overall due to an increase of always live memory.

    Note: We recommend using a value greater than 0.05. Below this value the volume of always live memory quickly increases and can result in OOM errors.

  • partialsType (half, float) [=float]

    Data type used for intermediate calculations.

  • pass (NONE, INFERENCE_FWD, TRAINING_FWD, TRAINING_BWD, TRAINING_WU, FC_INFERENCE_FWD, FC_TRAINING_FWD, FC_TRAINING_BWD, FC_TRAINING_WU) [=NONE]

  • use128BitConvUnitLoad (true, false) [=false]

    If true, convolution weights are loaded 128-bits at a time. Otherwise, they are loaded 64-bits at a time. Not all codelets support 128-bit loads. This option affects memory usage and cycle count.

  • enableMultiStageReduce (true, false) [=true]

    If true, perform the reduction following the convolution in multiple stages if it would significantly reduce code size. This comes at the cost of increasing the number of cycles.

  • enableFastReduce (true, false) [=false]

    If true, use a faster reduction vertex if the data types and widths allow it. This comes at the cost of further constraints on memory allocation

  • remapOutputTensor (true, false) [=true]

    If true, the output of the convolution is remapped if the output is detected to have a poor layout.

  • enableConvDithering (true, false) [=true]

    If true, then convolutions with different parameters will be laid out from different tiles in an effort to improve tile balance in models.

    Return

    The weights tensor suitable for use with convolution().

    Parameters
    • graph: The graph that the tensor will be added to.

    • params: The same parameters as used by the convolution().

    • name: Debugging name for the tensor.

    • options: Options controlling the implementation.

    • cache: Optional pointer to planning cache to use.

poplar::Tensor createBiases(poplar::Graph &graph, const poplar::Tensor &activations, const std::string &name = "biases")

Create a bias tensor suitable for input to addBias() function.

The tensor will have the shape [outChans]

Return

The tensor of biases.

Parameters
  • graph: The graph that the tensor will be added to.

  • activations: The activation tensor which is output from the convolution.

  • name: Debugging name for the tensor.

poplar::Tensor createInput(poplar::Graph &graph, const ConvParams &params, const std::string &name, const poplar::OptionFlags &options = {}, PlanningCache *cache = nullptr)

Create an input tensor for a convolution.

Use this when required to create an input data tensor for a convolution. The same set of parameters which will be passed to the convolution() should also be passed to createInput().

The returned tensor has the shape [B x inChans x H x W].

Return

The allocated input tensor.

Parameters
  • graph: The tensor will be added to this graph.

  • params: Parameters as passed to the target convolution.

  • name: Debugging name for the tensor.

  • options: Options controlling the implementation. See createWeights().

  • cache: Optional pointer to planning cache to use.

poplar::Tensor convolution(poplar::Graph &graph, const poplar::Tensor &in, const poplar::Tensor &weights, const ConvParams &params, bool transposeAndFlipWeights, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, PlanningCache *cache = nullptr)

Convolve an input with a set of weights.

This is for a 2D convolution.

The input tensor is in the form [B x inChans x H x W], and can be allocated using createInput(). The weights tensor is in the form [convGroups x outChansPerConvGroup x inChansPerConvGroup x H x W], and can be allocated using createWeights().

The returned tensor has the shape [B x outChans x H x W]

Padding and striding are specified in the ConvParams structure.

Return

The convolved output tensor.

Parameters
  • graph: The graph that the operation will be added to.

  • in: Input data tensor.

  • weights: Weights tensor.

  • params: Parameters for the form of the convolution.

  • transposeAndFlipWeights: For the weight update pass.

  • prog: Poplar program sequence to append the operation onto.

  • debugPrefix: Name of the operation, for debugging.

  • options: Options that control the implementation. See createWeights().

  • cache: Optional pointer to planning cache to use.

void preplanConvolutions(const std::set<ConvPlanParams> &convs, PlanningCache &cache)

Plan the specified convolutions.

Parameters
  • convs: A set of tuples of

    • conv-specific target for tile / IPU sizing

    • convolution parameters

    • implementation options. See createWeights(). All entries must have matching machine parameters.

  • cache: The planning cache to update.

void weightsTransposeChansFlipXY(poplar::Graph &graph, const poplar::Tensor &weightsIn, const poplar::Tensor &weightsOut, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Copy the weights in weightsIn into weightsOut such that each element of the kernel is transposed with respect to the input and output channels and flip each spatial dimension of the kernel.

See transposeAndFlipWeights parameter in convolution().

Parameters
  • graph: The graph that the operation will be added to.

  • weightsIn: The input weights tensor.

  • weightsOut: The output weights tensor.

  • prog: Poplar program sequence to append the operation onto.

  • debugPrefix: Name of the operation, for debugging.

void weightsTransposeChansFlipXY(poplar::Graph &graph, const poplar::Tensor &weightsInUnGrouped, const poplar::Tensor &weightsOutUnGrouped, std::vector<poplar::program::Copy> &preTranspose, poplar::ComputeSet transposeCS, std::vector<poplar::program::Copy> &postTranspose, const std::string &debugPrefix = "")

Copy the weights in weightsIn into weightsOut such that each element of the kernel is transposed with respect to the input and output channels and flip each spatial dimension of the kernel.

Overload that takes vectors of Copy programs and a ComputeSet instead of a Sequence.

See transposeAndFlipWeights parameter in convolution().

Parameters
  • graph: The graph that the operation will be added to.

  • weightsIn: The input weights tensor.

  • weightsOut: The output weights tensor.

  • prog: Poplar program sequence to append the operation onto.

  • debugPrefix: Name of the operation, for debugging.

poplar::Tensor calculateWeightDeltas(poplar::Graph &graph, const poplar::Tensor &zDeltas, const poplar::Tensor &activations, const ConvParams &params, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, PlanningCache *cache = nullptr)

Append an operation to generate the tensor of weight deltas onto prog.

Return

The weight deltas are the gradients with respect to the weights of the convolution. These are populated when the operation runs.

Parameters
  • graph: The tensor will be added to this graph.

  • zDeltas: Tensor containing the gradients with respect to the output of the convolution.

  • activation: Tensor containing the inputs to the convolution in the forward pass.

  • params: Parameters of the convolution.

  • prog: Poplar program sequence to append the operation onto.

  • debugPrefix: Name of the operation, for debugging.

  • options: Options controlling the implementation.

  • cache: Optional pointer to planning cache to use.

void convolutionWeightUpdate(poplar::Graph &graph, const poplar::Tensor &zDeltas, const poplar::Tensor &weights, const poplar::Tensor &activations, ConvParams params, const poplar::Tensor &scale, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, PlanningCache *cache = nullptr)

Append operations to to generate and apply the weight update.

See calculateWeightDeltas().

Parameters
  • graph: The graph that the operation will be added to.

  • zDeltas: Tensor containing the gradients with respect to the output of the convolution.

  • weights: Weights tensor.

  • activations: Tensor containing the inputs to the convolution in the forward pass.

  • params: Parameters of the convolution.

  • scale: Scale to apply to the zDeltas.

  • prog: Poplar program sequence to append the operations onto.

  • debugPrefix: Name of the operation, for debugging.

  • options: Options controlling the implementation.

  • cache: Optional pointer to planning cache to use.

void convolutionWeightUpdate(poplar::Graph &graph, const poplar::Tensor &zDeltas, const poplar::Tensor &weights, const poplar::Tensor &activations, ConvParams params, float scale, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, PlanningCache *cache = nullptr)

Append operations to to generate and apply the weight update.

See calculateWeightDeltas().

Parameters
  • graph: The graph that the operation will be added to.

  • zDeltas: Tensor containing the gradients with respect to the output of the convolution.

  • weights: Weights tensor.

  • activations: Tensor containing the inputs to the convolution in the forward pass.

  • params: Parameters of the convolution.

  • scale: Scale to apply to the zDeltas.

  • prog: Poplar program sequence to append the operations onto.

  • debugPrefix: Name of the operation, for debugging.

  • options: Options controlling the implementation.

  • cache: Optional pointer to planning cache to use.

void convolutionBiasUpdate(poplar::Graph &graph, const poplar::Tensor &zDeltas, const poplar::Tensor &biases, const poplar::Tensor &scale, const poplar::OptionFlags &options, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Add a program to update biases tensor with the gradients derived from the zDeltas tensor.

Parameters
  • graph: The graph that the operation will be added to.

  • zDeltas: Tensor containing the gradients with respect to the output of the convolution.

  • biases: Biases tensor to update.

  • scale: Scale to apply to to zDeltas tensor.

  • options: Options controlling the implementation.

  • prog: Poplar program sequence to append the operation onto.

  • debugPrefix: Name of the operation, for debugging.

void convolutionBiasUpdate(poplar::Graph &graph, const poplar::Tensor &zDeltas, const poplar::Tensor &biases, float scale, const poplar::OptionFlags &options, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Add a program to update biases tensor with the gradients derived from the zDeltas tensor.

Parameters
  • graph: The graph that the operation will be added to.

  • zDeltas: Tensor containing the gradients with respect to the output of the convolution.

  • biases: Biases tensor to update.

  • scale: Scale to apply to to zDeltas tensor.

  • options: Options controlling the implementation.

  • prog: Poplar program sequence to append the operation onto.

  • debugPrefix: Name of the operation, for debugging.

void addBias(poplar::Graph &graph, const poplar::Tensor &in, const poplar::Tensor &biases, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Adds a program to prog which adds biases to activations tensor.

Parameters
  • graph: The graph that the operation will be added to.

  • input: Tensor containing values which to add the biases.

  • biases: Biases to add to the input tensor.

  • prog: Poplar program sequence to append the operation onto.

  • debugPrefix: Name of the operation, for debugging.

void reportPlanInfo(std::ostream &out, const poplar::Graph &graph, const ConvParams &params, const poplar::OptionFlags &options = {}, PlanningCache *cache = nullptr)

Report the convolution plan corresponding the params and options provided.

Parameters
  • out: ostream to report the plan to.

  • graph: The graph that the convolution is planned with.

  • params: The same parameters as used by the convolution().

  • options: Options controlling the implementation.

  • cache: Optional pointer to planning cache to use.

void reportWeightUpdatePlanInfo(std::ostream &out, const poplar::Graph &graph, const ConvParams &fwdParams, const poplar::OptionFlags &fwdOptions = {}, PlanningCache *cache = nullptr)

Report the convolution plan corresponding to the weight update pass given the fwd pass params and options.

Parameters
  • out: ostream to report the plan to.

  • graph: The graph that the convolution is planned with.

  • fwdParams: Fwd pass parameters as used by the convolution().

  • fwdOptions: Fwd pass options controlling the implementation.

  • cache: Optional pointer to planning cache to use.

poplar::Tensor fullyConnectedWeightTranspose(poplar::Graph &graph, poplar::Tensor activations, const ConvParams &params, poplar::program::Sequence &prog, const std::string &debugPrefix, const poplar::OptionFlags &options, PlanningCache *cache = nullptr)
class PlanningCache

Public Functions

PlanningCache()
~PlanningCache()

Public Members

std::unique_ptr<PlanningCacheImpl> impl

4.3.4. poplin/FullyConnected.hpp

namespace poplin

Linear algebra functions.

A collection of utility functions to assist calculation of input/output ranges when moving a 2-dimensional kernel over a larger 2-dimensional space (for example in convolution or pooling layers)

namespace fc

Functions

std::vector<std::pair<MatMulParams, poplar::OptionFlags>> getMatMulPrePlanParameters(FullyConnectedParams parameters, poplar::OptionFlags matmulOptions, poplar::Type type, bool inferenceOnly)

Predict what matrix multiplications will be needed for the given parameters and return list of corresponding matmul parameters and options.

Return

Vector of pairs of {MatMulParams, OptionFlags} representing the complete set of matmul parameters for planning

Parameters
  • parameters: Parameters for the fully connected layer. See above for definitions.

  • matmulOptions: Option flags are the same as those from matmul. They are passed through to the underlying matmul, updating the fullyConnectedPass option only

  • type: Input and output datatype

  • inferenceOnly: Whether the FullyConnected layer is for inference only. If true, we can ignore backwards and weight update passes

struct FullyConnectedParams

Public Members

std::size_t numGroups
std::size_t batchSize
std::size_t inputSize
std::size_t outputSize

4.3.5. poplin/MatMul.hpp

namespace poplin

Linear algebra functions.

A collection of utility functions to assist calculation of input/output ranges when moving a 2-dimensional kernel over a larger 2-dimensional space (for example in convolution or pooling layers)

Typedefs

using MatMulPlanParams = std::tuple<const poplar::Target*, const MatMulParams, const poplar::OptionFlags*>

A tuple containing the required parameters to preplan a matmul:

  • matmul-specific target for tile / IPU sizing

  • matmul parameters

  • implementation options (see matMul() above) All entries must have matching machine parameters.

Functions

poplar::Tensor matMul(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const poplar::Type &outputType, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, matmul::PlanningCache *cache = nullptr)

Multiply two matrices.

Calculates C = A * B where A and B are matrices.

Matmul options

  • availableMemoryProportion Decimal between 0 and 1 (inclusive) [=0.6]

    See createWeights().

  • fullyConnectedPass (NONE, INFERENCE_FWD, TRAINING_FWD, TRAINING_BWD, TRAINING_WU) [=NONE]

    Optimize the plan for the specified type of pass. Note the abbreviations: FWD (forward), BWD (backward), WU (weight-update).

  • inputRHSIsPreArranged (true, false) [=false]

    Indicates to matMul functions whether the input data has already been re-arranged (using preArrangeMatMulInputRHS()). This allows data to be re-arranged once then used many times.

  • use128BitConvUnitLoad (true, false) [=false]

    If true, weights are loaded into the convolution unit 128-bits at a time. Otherwise, they are loaded 64-bits at a time. Not all codelets support 128-bit loads. This option affects memory usage and cycle count.

  • enableMultiStageReduce (true, false) [=true]

    If true, perform the reduction following the matrix multiplication in multiple stages if it would significantly reduce code size. This comes at the cost of increasing the number of cycles.

  • enableFastReduce (true, false) [=false]

    If true, use a faster reduction vertex if the data types and widths allow it. This comes at the cost of further constraints on memory allocation

  • remapOutputTensor (true, false) [=true]

    If true, the output of the convolution is remapped if the output is detected to have a poor layout.

  • partialsType (half, float) [=float]

    See createWeights().

    Return

    The tensor holding the result of the multiplication. This tensor will be created, added to the graph and mapped to tiles.

    Parameters
    • graph: The Poplar graph.

    • A: The left argument to the multiplication. This 2D tensor must be already mapped to tiles.

    • B: The right argument to the multiplication. This 2D tensor must be already mapped to tiles.

    • prog: A reference to a program sequence which will be appended with the code to perform the multiplication.

    • outputType: Optional via overloaded function. Element type of returned tensor. The default is A.elementType() if omitted.

    • debugPrefix: A debug prefix added to compute set and tensor names.

    • options: The structure describing options on how the multiplication should be implemented.

    • cache: Optional pointer to a planning cache to use.

poplar::Tensor matMul(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, matmul::PlanningCache *cache = nullptr)
void matMulReportPlan(std::ostream &out, const poplar::Graph &graph, const poplar::Type &inputType, const poplar::Type &outputType, const std::vector<std::size_t> &aShape, const std::vector<std::size_t> &bShape, const poplar::OptionFlags &options = {}, matmul::PlanningCache *cache = nullptr)
poplar::Tensor matMulGrouped(poplar::Graph &graph, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const poplar::Type &outputType, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, matmul::PlanningCache *cache = nullptr)

Multiply two grouped matrices.

Calculates C[g] = A[g] * B[g] where A[g] and B[g] are matrices for each element in the group. g is element of the set {0, 1, …, G-1}

The multiplication is done for every element in the group. The first dimension of the matrices is the group dimension with value equal to G.

Return

The tensor holding the result of the grouped multiplication. This tensor will be created, added to the graph and mapped to tiles.

Parameters
  • graph: The Poplar graph.

  • A: The left argument to the grouped multiplication. This 3D tensor must be already mapped to tiles.

  • B: The right argument to the grouped multiplication. This 3D tensor must be already mapped to tiles.

  • prog: A reference to a program sequence which will be appended with the code to perform the multiplication.

  • outputType: Data type to be used for the returned tensor.

  • debugPrefix: A debug prefix added to compute set and tensor names.

  • options: The structure describing options on how the grouped multiplication should be implemented. See matMul().

  • cache: Optional pointer to a planning cache to use.

void matMulGroupedReportPlan(std::ostream &out, const poplar::Graph &graph, const poplar::Type &inputType, const poplar::Type &outputType, const std::vector<std::size_t> &aShape, const std::vector<std::size_t> &bShape, const poplar::OptionFlags &options = {}, matmul::PlanningCache *cache = nullptr)
void matMulAcc(poplar::Graph &graph, const poplar::Tensor &C, float k, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, matmul::PlanningCache *cache = nullptr)

Multiply two matrices and add to a third (with a scaling factor).

Calculates C += k * A * B where A, B are matrices and k is a constant scalar.

Parameters
  • graph: The Poplar graph.

  • C: The matrix to add to. This 2D tensor must be already mapped to tiles.

  • k: The constant or a single element tensor to multiply the result of the multiplication. If k is a tensor, it must be of the same type as A

  • A: The left argument to the multiplication. This 2D tensor must be already mapped to tiles.

  • B: The right argument to the multiplication. This 2D tensor must be already mapped to tiles.

  • prog: A reference to a program sequence which will be appended with the code to perform the multiplication and add.

  • debugPrefix: A debug prefix added to compute set and tensor names.

  • options: The structure describing options on how the multiplication should be implemented. See matMul().

  • cache: Optional pointer to a planning cache to use.

void matMulAcc(poplar::Graph &graph, const poplar::Tensor &C, const poplar::Tensor &k, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, matmul::PlanningCache *cache = nullptr)
void matMulGroupedAcc(poplar::Graph &graph, const poplar::Tensor &C, float k, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, matmul::PlanningCache *cache = nullptr)

Multiply two grouped matrices and add to a third (with a scaling factor).

Calculates C[g] += k * A[g] * B[g] where A[g], B[g] are matrices and k is a constant scalar. g is element of the set g = {0, 1, …, G-1}

The multiplication is done for every element in the group. The first dimension of the matrices is the group dimension with value equal to G

Parameters
  • graph: The Poplar graph.

  • C: The matrix to add to. This 3D tensor must be already mapped to tiles.

  • k: The constant or a single element tensor to multiply the result of the multiplication. If k is a tensor, it must be of the same type as A

  • A: The left argument to the grouped multiplication. This 3D tensor must be already mapped to tiles.

  • B: The right argument to the multiplication. This 3D tensor must be already mapped to tiles.

  • prog: A reference to a program sequence which will be appended with the code to perform the grouped multiplication and add.

  • debugPrefix: A debug prefix added to compute set and tensor names.

  • options: The structure describing options on how the multiplication should be implemented. See matMul().

  • cache: Optional pointer to planning cache to use.

void matMulGroupedAcc(poplar::Graph &graph, const poplar::Tensor &C, const poplar::Tensor &k, const poplar::Tensor &A, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, matmul::PlanningCache *cache = nullptr)
poplar::Tensor createMatMulInputLHS(poplar::Graph &graph, const poplar::Type &inputType, const poplar::Type &outputType, const std::vector<std::size_t> &aShape, const std::vector<std::size_t> &bShape, const std::string &name, const poplar::OptionFlags &options = {}, matmul::PlanningCache *cache = nullptr)

Create an tensor that is used as the left operand of matrix multiplication.

This will create a 2D tensor in the graph. The ordering and tile mapping of the tensor will be set to make a matrix multiplication with this tensor as the left argument efficient.

Return

A matrix of type type and shape aShape. The tensor will have been mapped to tiles.

Parameters
  • graph: The Poplar graph.

  • inputType: The input data type.

  • outputType: The data type of the returned tensor.

  • aShape: The shape of the required matrix.

  • bShape: The shape of the matrix that the required matrix will be multiplied by.

  • name: The debug name of the required matrix.

  • options: The implementation options of the multiplication. See matMul().

  • cache: Optional pointer to a planning cache to use.

poplar::Tensor createMatMulInputLHS(poplar::Graph &graph, const poplar::Type &dataType, const std::vector<std::size_t> &aShape, const std::vector<std::size_t> &bShape, const std::string &name, const poplar::OptionFlags &options = {}, matmul::PlanningCache *cache = nullptr)

Overloaded function for when inputType == outputType (represented by the dataType parameter).

poplar::Tensor createMatMulGroupedInputLHS(poplar::Graph &graph, const poplar::Type &inputType, const poplar::Type &outputType, const std::vector<std::size_t> &aShape, const std::vector<std::size_t> &bShape, const std::string &name, const poplar::OptionFlags &options = {}, matmul::PlanningCache *cache = nullptr)

Create an tensor that is used as the left operand of a grouped matrix multiplication.

This will create a 3D tensor in the graph. The ordering and tile mapping of the tensor will be set to make a grouped matrix multiplication with this tensor as the left argument efficient.

The first dimension of the required matrix and the matrix it multiplies by must the number of groups.

Return

A matrix of type type and grouped shape aShape. The tensor will have been mapped to tiles.

Parameters
  • graph: The Poplar graph.

  • type: The data type of the required matrix.

  • aShape: The grouped shape {g, r, c} of the required matrix.

  • bShape: The grouped shape {g, r, c} of the matrix that the required matrix will be multiplied by.

  • name: The debug name of the required matrix.

  • options: The implementation options of the multiplication. See matMul().

  • cache: Optional pointer to a planning cache to use.

poplar::Tensor createMatMulInputRHS(poplar::Graph &graph, const poplar::Type &inputType, const poplar::Type &outputType, const std::vector<std::size_t> &aShape, const std::vector<std::size_t> &bShape, const std::string &name, const poplar::OptionFlags &options = {}, matmul::PlanningCache *cache = nullptr)

Create an tensor that is used as the right operand of matrix multiplication.

This will create a 2D tensor in the graph. The ordering and tile mapping of the tensor will be set to make a matrix multiplication with this tensor as the right argument efficient.

Return

A matrix of type type and shape bShape. The tensor will have been mapped to tiles.

Parameters
  • graph: The Poplar graph.

  • inputType: The input data type.

  • outputType: The data type of the returned tensor.

  • aShape: The shape of the matrix that the required matrix will be multiplied by.

  • bShape: The shape of the required matrix.

  • name: The debug name of the required matrix.

  • options: The implementation options of the multiplication. See matMul().

  • cache: Optional pointer to a planning cache to use.

poplar::Tensor createMatMulInputRHS(poplar::Graph &graph, const poplar::Type &dataType, const std::vector<std::size_t> &aShape, const std::vector<std::size_t> &bShape, const std::string &name, const poplar::OptionFlags &options = {}, matmul::PlanningCache *cache = nullptr)

Overloaded function for when inputType == outputType (represented by the dataType parameter).

poplar::Tensor createMatMulGroupedInputRHS(poplar::Graph &graph, const poplar::Type &inputType, const poplar::Type &outputType, const std::vector<std::size_t> &aShape, const std::vector<std::size_t> &bShape, const std::string &name, const poplar::OptionFlags &options = {}, matmul::PlanningCache *cache = nullptr)

Create an tensor that is used as the right operand of grouped matrix multiplication.

This will create a 3D tensor in the graph. The ordering and tile mapping of the tensor will be set to make a grouped matrix multiplication with this tensor as the right argument efficient.

The first dimension of the required matrix and the matrix it multiplies by must the number of groups.

Return

A matrix of type type and grouped shape bShape. The tensor will have been mapped to tiles.

Parameters
  • graph: The Poplar graph.

  • type: The data type of the required matrix.

  • aShape: The grouped shape {g, r, c} of the matrix that the required matrix will be multiplied by.

  • bShape: The grouped shape {g, r, c} of the required matrix.

  • name: The debug name of the required matrix.

  • options: The implementation options of the multiplication. See matMul().

  • cache: Optional pointer to planning cache to use.

poplar::Tensor preArrangeMatMulInputRHS(poplar::Graph &graph, const std::vector<std::size_t> &aShape, const poplar::Tensor &B, poplar::program::Sequence &prog, const poplar::Type &outputType, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, matmul::PlanningCache *cache = nullptr)

Re-arrange memory for RHS operand to an upcoming matmul operation.

This allows the rearrangement of the memory of a tensor that would otherwise be rearranged as part of the matmul operation for efficiency.

Use this function and the matMul* functions with the inputRHSIsPreArranged option flag to do any re-arrangement necessary once and then re-use that input multiple times.

Only valid for fully connected layers.

Return

New tensor holding the rearranged input. This tensor has the same shape as the given tensor.

Parameters
  • graph: The Poplar graph.

  • aShape: The shape of the left argument to the multiplication.

  • B: The right argument to the multiplication. This 2D tensor must be already mapped to tiles.

  • prog: A reference to a program sequence which will be appended with the code to perform the arrangement.

  • outputType: Optional via overloaded function. Element type of returned tensor. The default is B.elementType() if omitted.

  • debugPrefix: A debug prefix added to compute set and tensor names.

  • options: Flags describing options for how the multiplication should be implemented. See matMul().

  • cache: Optional pointer to planning cache to use.

poplar::Tensor preArrangeMatMulInputRHS(poplar::Graph &graph, const std::vector<std::size_t> &aShape, const poplar::Tensor &B, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, matmul::PlanningCache *cache = nullptr)
poplar::Tensor preArrangeMatMulGroupedInputRHS(poplar::Graph &graph, const std::vector<std::size_t> &aShape, const poplar::Tensor &B, poplar::program::Sequence &prog, const poplar::Type &outputType, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, matmul::PlanningCache *cache = nullptr)
poplar::Tensor transposeGroupedMatrix(const poplar::Tensor &A)

Transposes a grouped matrix tensor.

Return

Transposed tensor

Parameters
  • A: Tensor to transpose

void preplanMatMuls(const std::set<MatMulPlanParams> &matmuls, matmul::PlanningCache &cache)

Plan the specified matrix multiplications.

Parameters
  • matmuls: A set of parameters to preplan matmuls

  • cache: The planning cache to update

struct MatMulParams
#include <MatMul.hpp>

Parameters to define a Matrix multiplication C = A * B.

Public Members

poplar::Type inputType

Input type (of A & B)

poplar::Type outputType

Output type (of C)

std::vector<std::size_t> aShape

Shape of the lhs input matrix (A)

std::vector<std::size_t> bShape

Shape of the rhs input matrix (B)

Friends

friend bool operator<(const MatMulParams &a, const MatMulParams &b)
namespace matmul
class PlanningCache

Public Functions

PlanningCache()
~PlanningCache()

Public Members

std::unique_ptr<PlanningCacheImpl> impl

4.3.6. poplin/MeshGrid.hpp

namespace poplin

Linear algebra functions.

A collection of utility functions to assist calculation of input/output ranges when moving a 2-dimensional kernel over a larger 2-dimensional space (for example in convolution or pooling layers)

Functions

poplar::Tensor linspace(poplar::Graph &graph, const poplar::Type &type, float left, float right, size_t count, const std::string &debugPrefix = "")

Create a constant variable that contains values equally spaced in the specified closed range [left, right].

Return

Constant Tensor of rank 1 (vector) containing the linspace values.

Parameters
  • graph: Graph to which the variable is added.

  • left: The first value in the range.

  • right: The last value in the range.

  • type: Data type of variable to create. Must be FLOAT or HALF.

std::vector<poplar::Tensor> meshgrid2d(poplar::Graph &graph, poplar::Tensor x, poplar::Tensor y)

Create a coordinate grid for each axis by broadcasting the input tensors.

This 2D specialisation only supports two inputs that must be of rank 1 (vectors) and hence the output coordinate grids are always two matrices (so two outputs of rank two).

Return

A list of (two) tensors that form co-ordinate grids for each input axis. These output tensors will be views of the inputs (reshaped and broadcast)

Parameters
  • graph: Graph to which the variables are added.

  • x: Co-ordinates for the x-axis

  • y: Co-ordinates for the y-axis

4.3.7. poplin/MultiConvolution.hpp

namespace poplin

Linear algebra functions.

A collection of utility functions to assist calculation of input/output ranges when moving a 2-dimensional kernel over a larger 2-dimensional space (for example in convolution or pooling layers)

namespace multiconv

Functions

poplar::Tensor createWeights(poplar::Graph &graph, const std::vector<CreateTensorArgs> &args, unsigned weightsIndex, const poplar::OptionFlags &options = {}, poplin::PlanningCache *cache = nullptr)

Create a specific weights tensor for the multiconvolution.

Return

A weights tensor suitable for use with convolution().

Parameters
  • graph: The graph that the tensors will be added to.

  • args: The same set of parameters as used by convolution().

  • weightsIndex: Index into args describing the convolution which to create the weights for.

  • options: Options controlling the implementation.

  • cache: Optional pointer to a planning cache to use.

poplar::Tensor createInput(poplar::Graph &graph, const std::vector<CreateTensorArgs> &args, unsigned inputIndex, const poplar::OptionFlags &options = {}, poplin::PlanningCache *cache = nullptr)

Create a specific input tensor for the multiconvolution.

Return

A input tensor suitable for use with convolution().

Parameters
  • graph: The graph that the tensors will be added to.

  • args: The same set of parameters as used by convolution().

  • inputIndex: Index into args describing the convolution which to create the input for.

  • options: Options controlling the implementation.

  • cache: Optional pointer to a planning cache to use.

std::vector<poplar::Tensor> convolution(poplar::Graph &graph, const std::vector<ConvolutionArgs> &args, bool transposeAndFlipWeights, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, poplin::PlanningCache *cache = nullptr)

Convolve a set of inputs with a set of weights.

See Convolution.hpp for more information.

Return

Set of convolved output tensors.

Parameters
  • graph: The graph that the operations will be added to.

  • args: Collection of inputs, weights, and convolution parameters specifying each convolution in the multiconvolution.

  • transposeAndFlipWeights: Prepare the weights for the backwards pass.

  • prog: Poplar program sequence to append the operations onto.

  • debugPrefix: Name of the operation, for debugging.

  • options: Options controlling the implementation.

  • cache: Optional pointer to a planning cache to use.

std::vector<poplar::Tensor> calculateWeightDeltas(poplar::Graph &graph, const std::vector<CalculateWeightDeltasArgs> &args, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, poplin::PlanningCache *cache = nullptr)

Append an operation to generate the set of weight delta tensors.

See Convolution.hpp for more information.

Return

Set of weight deltas.

Parameters
  • graph: The graph that the operations will be added to.

  • args: Collection of zDeltas, activations, and convolution parameters specifying each convolution in the multiconvolution.

  • prog: Poplar program sequence to append the operations onto.

  • debugPrefix: Name of the operation, for debugging.

  • options: Options controlling the implementation.

  • cache: Optional pointer to a planning cache to use.

void convolutionWeightUpdate(poplar::Graph &graph, const std::vector<ConvWeightUpdateArgs> &args, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, poplin::PlanningCache *cache = nullptr)

Append operations to prog to generate and apply the weight update.

See Convolution.hpp for more information.

Parameters
  • graph: The graph that the operations will be added to.

  • args: Collection of zDeltas, activations, scale, and convolution parameters for the weight updates in the multiconvolution.

  • prog: Poplar program sequence to append the operations onto.

  • debugPrefix: Name of the operation, for debugging.

  • options: Options controlling the implementation.

  • cache: Optional pointer to a planning cache to use.

void convolutionWeightUpdate(poplar::Graph &graph, const std::vector<ConvWeightUpdateArgsScalar> &args, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, poplin::PlanningCache *cache = nullptr)

Append operations to prog to generate and apply the weight update.

See Convolution.hpp for more information.

Parameters
  • graph: The graph that the operations will be added to.

  • args: Collection of zDeltas, activations, scale, and convolution parameters for the weight updates in the multiconvolution.

  • prog: Poplar program sequence to append the operations onto.

  • debugPrefix: Name of the operation, for debugging.

  • options: Options controlling the implementation.

  • cache: Optional pointer to a planning cache to use.

struct CalculateWeightDeltasArgs
#include <MultiConvolution.hpp>

Parameters
  • zDeltas: Tensor containing gradients with respect to the output of the convolution.

  • activations: Tensor containing the inputs of the convolution in the forward pass.

  • params: Parameters specifying the convolution.

  • options: Options controlling the implementation.

Public Members

poplar::Tensor zDeltas
poplar::Tensor activations
ConvParams params
poplar::OptionFlags options
struct ConvolutionArgs
#include <MultiConvolution.hpp>

Parameters
  • in: Input tensor.

  • weights: Weights tensor.

  • params: Parameters specifying the convolution.

  • options: Options controlling the implementation.

Public Members

poplar::Tensor inputs
poplar::Tensor weights
ConvParams params
poplar::OptionFlags options
struct ConvWeightUpdateArgs
#include <MultiConvolution.hpp>

Parameters
  • zDeltas: Tensor containing gradients with respect to the output of the convolution.

  • weights: Weights tensor.

  • activations: Tensor containing the inputs of the convolution in the forward pass.

  • scale: Scale to apply to the zDeltas.

  • params: Parameters specifying the convolution.

  • options: Options controlling the implementation.

Public Members

poplar::Tensor zDeltas
poplar::Tensor weights
poplar::Tensor activations
poplar::Tensor scale
ConvParams params
poplar::OptionFlags options
struct ConvWeightUpdateArgsScalar
#include <MultiConvolution.hpp>

Parameters
  • zDeltas: Tensor containing gradients with respect to the output of the convolution.

  • weights: Weights tensor.

  • activations: Tensor containing the inputs of the convolution in the forward pass.

  • scale: Scale to apply to the zDeltas.

  • params: Parameters specifying the convolution.

  • options: Options controlling the implementation.

Public Members

poplar::Tensor zDeltas
poplar::Tensor weights
poplar::Tensor activations
float scale
ConvParams params
poplar::OptionFlags options
struct CreateTensorArgs
#include <MultiConvolution.hpp>

Multi-convolutions allow for a set of convolutions to be executed in parallel.

The benefit of executing convolutions in parallel is an increase in data throughput. Specifically, executing N independent convolutions in parallel will be faster than sequentially executing them because less time is spent on the ~constant vertex overhead per tile.

Note that the allocation of associated tensors for convolutions should be done through the same api such that they are mapped across tiles appropriately for the operation.

See Convolution.hpp for information about convolutions and each individual operation.

Multi-Convolution options

  • planType (serial, parallel) [=parallel]

    Which multi-conv implementation to use. Serial is the same as using the normal API for each convolution.

  • perConvReservedTiles Integer [=50]

    The amount of tiles to reserve for each convolution when planning.

  • cycleBackOff Double [=0.1]

    A percentage, represented as a proportion between 0 and 1 of how much off the fastest plan when attempting to plan the largest convolution using the least amount of tiles.

    This number is scaled up according to how many convolutions are being run in parallel.

    Parameters
    • params: Parameters specifying the convolution.

    • options: Options controlling the implementation.

    • name: Debugging name for the tensor.

Public Members

ConvParams params
poplar::OptionFlags options
std::string name

4.3.8. poplin/Norms.hpp

namespace poplin

Linear algebra functions.

A collection of utility functions to assist calculation of input/output ranges when moving a 2-dimensional kernel over a larger 2-dimensional space (for example in convolution or pooling layers)

Functions

poplar::Tensor createNormGamma(poplar::Graph &graph, const poplar::Tensor &acts)

Create and map the per channel multiplicative gamma parameter tensor used for normalisation in convolution layers.

Return

Gamma vector of dimension C.

Parameters
  • graph: The graph with the activations and gamma tensor.

  • acts: The activations tensor has shape [N][C][..F..] where

    • N is the batch size

    • C is the number of channels

    • ..F.. is dimensions of a N-dimensional field.

poplar::Tensor createNormBeta(poplar::Graph &graph, const poplar::Tensor &acts)

Create and map the per channel additive beta parameter tensor used for normalisation in convolution layers.

Return

Beta vector of dimension C.

Parameters
  • graph: The graph with the activations and beta tensor.

  • acts: The activations tensor has shape [N][C][..F..] where

    • N is the batch size

    • C is the number of channels

    • ..F.. is dimensions of a N-dimensional field

std::pair<poplar::Tensor, poplar::Tensor> createNormParams(poplar::Graph &graph, const poplar::Tensor &acts)

Creates a tensor pair of normalisation parameters (gamma, beta).

Return

A pair of vectors of dimension C.

Parameters
  • graph: The graph with the activations and beta/gamma tensors.

  • acts: The activations tensor has shape [N][C][..F..] where

    • N is the batch size

    • C is the number of channels

    • ..F.. is dimensions of a N-dimensional field

std::pair<poplar::Tensor, poplar::Tensor> normStatistics(poplar::Graph &graph, const poplar::Tensor &actsUngrouped, float eps, poplar::program::Sequence &prog, bool unbiasedVarEstimate, bool stableAlgo = false, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "")

Compute the normalisation statistics from the activations tensor.

The activations tensor is of shape [N][C][..F..]. The mean and inverse standard deviation is computed over dimensions {[N] [..F..]| and vectors of length C are returned as estimates.

The input activations tensor must be rearranged such that statistics are computed for C channels.

Return

A vector pair with mean and inverse standard deviation.

Parameters
  • graph: The graph in which the computation is performed.

  • actsUngrouped: The activation with shape [N][C][..F..] where

    • N is the batch size

    • C is the number of channels

    • ..F.. is dimensions of a N-dimensional field.

  • eps: The epsilon added to the variance to avoid divide by zero.

  • prog: A reference to the a program sequence which will be appended with the code to perform the normalisation.

  • unbiasedVarEstimate: Compute unbiased variance estimate.

  • stableAlgo: If true, computes the mean first and subtracts the activations by it before computing the variance. The implementation with this flag set to true is

  • partialsType: Poplar type used for partials.

  • debugPrefix: A debug prefix added to compute set and tensor names.

poplar::Tensor normWhiten(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &mean, const poplar::Tensor &iStdDev, poplar::program::Sequence &prog, const std::string &debugPrefix)

Compute the whitened activations using the supplied mean and inverse standard deviation.

The input activations undergo a prior rearrangement such that C is the size of the statistics mean and iStdDev.

Return

Whitened activations.

Parameters
  • graph: The graph which the computation is in.

  • acts: The activations tensor of shape [N][C][..F..].

  • mean: Mean of the activations with dimension C.

  • iStdDev: Inverse standard deviation with dimension C.

  • prog: A reference to the a program sequence which will be appended with the code to perform the normalisation.

  • debugPrefix: A debug prefix added to compute set and tensor names.

poplar::Tensor normalise(poplar::Graph &graph, const poplar::Tensor &actsWhitened, const poplar::Tensor &gamma, const poplar::Tensor &beta, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Computes the normalised output given whitened activations.

Parameters
  • graph: The graph to which the normalisaton operation is added.

  • actsWhitened: Whitened activations.

  • gamma: Per channel multiplicative normalisation parameter.

  • beta: Per channel additive normalisation parameter.

  • prog: A reference to the a program sequence which will be appended with the code to perform the normalisation.

  • debugPrefix: A debug prefix added to compute set and tensor names.

std::pair<poplar::Tensor, poplar::Tensor> normParamGradients(poplar::Graph &graph, const poplar::Tensor &actsWhitened, const poplar::Tensor &gradsIn, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "")

Compute gradients with respect to parameters required for parameter update.

Parameters
  • graph: The graph to which the normalisaton operation is added.

  • actsWhitened: Whitened activations.

  • gradsIn: Input gradients to the normalisation layer.

  • prog: A reference to the a program sequence which will be appended with the code to perform the normalisation.

  • partialsType: The intermediate type kept in the computation.

  • debugPrefix: A debug prefix added to compute set and tensor names.

poplar::Tensor normGradients(poplar::Graph &graph, const poplar::Tensor &gradsIn, const poplar::Tensor &gamma, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Propagate the gradients through the normalisation layer.

Parameters
  • graph: The graph to which the normalisaton operation is added.

  • gradsIn: Input gradients to the normalisation layer.

  • gamma: Multiplicative parameter used in the normalisation.

  • prog: A reference to the a program sequence which will be appended with the code to perform the normalisation.

  • debugPrefix: A debug prefix added to compute set and tensor names.

poplar::Tensor normStatisticsGradients(poplar::Graph &graph, const poplar::Tensor &actsWhitened, const poplar::Tensor &gradsIn, const poplar::Tensor &invStdDev, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "")

Propagate the gradients through the norm statistics layer.

The input to the layer is the output gradients from the normalisation layer. The whitened activations and the input gradients must have undergone a prior rearrangement such that the channel dimension has the same elements as invStdDev.

Parameters
  • graph: The graph to which the normalisaton operation is added.

  • actsWhitened: Forward whitened activations.

  • gradsIn: Input gradients to the normalisation layer.

  • invStdDev: Inverse standard deviation from norm statistics.

  • prog: A reference to the a program sequence which will be appended with the code to perform the normalisation.

  • debugPrefix: A debug prefix added to compute set and tensor names.

4.4. Random number operations (poprand)

Functions for tensor operations using random numbers. These make use of the hardware pseudo-random number generators (PRNG) on each tile. There is a separate PRNG for each worker thread. These are designed to allow every vertex to generate a different pseudo-random sequence but also, importantly, to ensure that the same sequence can be regenerated when required.

These function have an optional seed parameter for initialising the tiles’ PRNGs. Because there is no 64-bit integer type in device code, this is passed as a tensor of two 32-bit integers. This seed value is common to an entire graph or subgraph.

A “seed modifier” parameter is also used, which enables each vertex to generate a different pseudo-random sequence from the same seed. This is ignored if the seed is not specified.

The pseudo-random sequence is determined by a combination of tile-id, thread-id, seed and seed modifier.

If a seed is provided then, at the end of the operation, the PRNG state is restored to be the same as it was before the operation.

The functions have a reference tensor as a parameter. This is used to define the layout of the output tensor in order to guarantee deterministic results when a seed is specified. It ensures that if the same seed and seed modifier values are used then the same output is obtained.

4.4.1. poprand/RandomGen.hpp

namespace poprand

Pseudo-random number generator (PRNG) functions.

Functions

poplar::Tensor dropout(poplar::Graph &graph, const poplar::Tensor *seed, const uint32_t seedModifier, const poplar::Tensor &input, const poplar::Tensor &reference, double keepProbability, double scale, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Apply dropout to a tensor.

The elements of tensor input are multiplied by a mask consisting of a sequence of randomly generated 1 or 0. The keep probability of the dropout P(1) = keepProbability. The contents of the mask depend on the keep probability, seed, seed modifier and layout of the reference tensor.

Return

A tensor with elements randomly set to either zero or the scaled input value.

Parameters
  • graph: The graph to add this operation to.

  • seed: If not null, this is a pair of 32-bit integers used to seed the random number generator that generates the dropout mask.

  • seedModifier: Provides a further modification of the seed value. Ignored if seed is null.

  • input: The input tensor to be masked.

  • reference: A tensor that specifies the layout of the output tensor. Must be the same shape as the input.

  • keepProbability: The probability of keeping an input value.

  • scale: Scales the output tensor. This is typically the inverse of the dropout probability, (1 / P(1)).

  • prog: The program to add this operation to.

  • debugPrefix: A prefix string for debugging.

poplar::Tensor shapedDropout(poplar::Graph &graph, const poplar::Tensor *seed, const uint32_t seedModifier, const poplar::Tensor &input, const poplar::Tensor &reference, double keepProbability, double scale, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Apply shaped dropout to a tensor.

The elements of tensor input are multiplied by a mask consisting of a sequence of randomly generated 1 or 0. The keep probability of the dropout P(1) = keepProbability.

Shaped dropout allows row, column and dimension wise dropout, versus element-wise standard dropout. The shape of the dropout must be compatible (broadcastable) to input.

The contents of the mask depend on the keep probability, seed, seed modifier and layout of the reference tensor.

Return

A tensor with elements randomly set to either zero or the scaled input value.

Parameters
  • graph: The graph to add this operation to.

  • seed: If not null, this is a pair of 32-bit integers used to seed the random number generator that generates the dropout mask.

  • seedModifier: Provides a further modification of the seed value. Ignored if seed is null.

  • input: The input tensor to be masked.

  • reference: A tensor that specifies the shape and layout of the dropout. Must be broadcastable to the input.

  • keepProbability: The probability of keeping an input value.

  • scale: Scales the output tensor. This is typically the inverse of the dropout probability, (1 / P(1)).

  • prog: The program to add this operation to.

  • debugPrefix: A prefix string for debugging.

poplar::Tensor uniform(poplar::Graph &graph, const poplar::Tensor *seed, uint32_t seedModifier, const poplar::Tensor &reference, const poplar::Type &outType, double minVal, double maxVal, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Uniform distribution in a given interval with maxVal > minVal.

Generates random data with uniform distribution in the interval [minVal, maxVal]. The output may be of type float, half or int.

For type int, data is generated in the interval [minVal, maxVal] with uniform probability if (maxVal - minVal) is a power of 2. Otherwise there will be a small bias in the probability generated, with the bias directly proportional to the ratio (maxVal - minVal + 1 ) / 2^32.

Return

A tensor with elements having a uniform distribution of random values.

Parameters
  • graph: The graph to add this operation to.

  • seed: If not null, this is a pair of 32-bit integers used to seed the random number generator that generates the distribution.

  • seedModifier: Provides a further modification of the seed value. Ignored if seed is null.

  • reference: A tensor that specifies the layout of the output tensor.

  • outType: Type of the output tensor. One of float, half or int.

  • minVal: The minimum value of the distribution.

  • maxVal: The maximum value of the distribution.

  • prog: The program to add this operation to.

  • debugPrefix: A prefix string for debugging.

poplar::Tensor bernoulli(poplar::Graph &graph, const poplar::Tensor *seed, uint32_t seedModifier, const poplar::Tensor &reference, const poplar::Type &outType, double prob, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Bernoulli distribution which has the value 1 with the specified probability.

Generates a tensor with random values of 0 and 1, determined by prob.

Return

A tensor with elements randomly set to either zero or the scaled input value.

Parameters
  • graph: The graph to add this operation to.

  • seed: If not null, this is a pair of 32-bit integers used to seed the random number generator that generates the distribution.

  • seedModifier: Provides a further modification of the seed value. Ignored if seed is null.

  • reference: A tensor that specifies the layout of the output tensor.

  • outType: Type of the output tensor. One of float, half or int.

  • prob: Probability of an element being 1.

  • prog: The program to add this operation to.

  • debugPrefix: A prefix string for debugging.

poplar::Tensor normal(poplar::Graph &graph, const poplar::Tensor *seed, uint32_t seedModifier, const poplar::Tensor &reference, const poplar::Type &outType, double mean, double stdDev, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Normal distribution with given mean and standard deviation.

Generates random data with a normal (Gaussian) distribution. The mean is given by mean and the standard deviation by stdDev.

Return

A tensor with elements randomly set to either zero or the scaled input value.

Parameters
  • graph: The graph to add this operation to.

  • seed: If not null, this is a pair of 32-bit integers used to seed the random number generator that generates the distribution.

  • seedModifier: Provides a further modification of the seed value. Ignored if seed is null.

  • reference: A tensor that specifies the layout of the output tensor.

  • outType: Type of the output tensor. One of float or half.

  • mean: The mean value of the distribution.

  • stdDev: The standard deviation of the distribution.

  • prog: The program to add this operation to.

  • debugPrefix: A prefix string for debugging.

poplar::Tensor truncatedNormal(poplar::Graph &graph, const poplar::Tensor *seed, uint32_t seedModifier, const poplar::Tensor &reference, const poplar::Type &outType, double mean, double stdDev, double alpha, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Truncated normal distribution.

Generates a distribution derived from a normal distribution with mean mean and standard deviation stdDev. This normal distribution is truncated symmetrically about the mean at (mean - alpha * stdDev) and (mean + alpha * stdDev)

Return

A tensor with elements randomly set to either zero or the scaled input value.

Parameters
  • graph: The graph to add this operation to.

  • seed: If not null, this is a pair of 32-bit integers used to seed the random number generator that generates the distribution.

  • seedModifier: Provides a further modification of the seed value. Ignored if seed is null.

  • reference: A tensor that specifies the layout of the output tensor.

  • outType: Type of the output tensor. One of float or half.

  • mean: The mean value of the distribution.

  • stdDev: The standard deviation of the distribution.

  • alpha: Defines the minimum and maximum values of the distribution.

  • prog: The program to add this operation to.

  • debugPrefix: A prefix string for debugging.

void setSeed(poplar::Graph &graph, const poplar::Tensor &masterSeed, uint32_t seedModifier, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Sets the random number generator seed on all tiles.

Parameters
  • graph: The graph to add this operation to.

  • masterSseed: A 64-bit integer to seed the random number on every tile.

  • seedModifier: Provides a further modification of the seed value.

  • prog: The program to add this operation to.

  • debugPrefix: A prefix string for debugging.

4.5. Sparse tensor operations (popsparse)

Functions for operating on block sparse tensors. Static block and dynamic sparsity are supported.

4.5.1. popsparse/BlockSparse.hpp

namespace popsparse

Support for sparse matrices.

namespace experimental

Enums

enum SubBlockMask

Define the sparsity mask inside a block.

The diagonal is defined across sll the non-sparse matrix dimensions, where the row index is equal to the column index.

Values:

enumerator None

No elements are zeroed out.

enumerator ZeroUpperTriangle

Elements in the upper triangle, above the diagonal, are zeroed out.

enumerator ZeroLowerTriangle

Elements in the lower triangle, below the diagonal, are zeroed out.

Functions

poplar::Tensor bsSoftmax(poplar::Graph &graph, poplar::Tensor sparseTensor, const std::array<int, 2> &dim, const std::array<int, 2> &blockSize, const std::vector<unsigned char> &sparsity, SubBlockMask subBlockMaskType, poplar::program::Sequence &prog, const std::string &debugStr = "")

This function computes softmax on a sparse tensor.

Parameters
  • graph: The Poplar graph.

  • sparseTensor: The input sparse 2D tensor. It must be in a block-sparse format.

  • dim[0]: Number of rows of the original dense tensor.

  • dim[1]: Number of columns of the original dense tensor.

  • blockSize[0]: Block size of the rows.

  • blockSize[1]: Block size of the columns.

  • sparsity: The 2D sparsity mask for the block-sparse tensor, in which ‘1’ is a non zero block and ‘0’ is a zero block.

  • subBlockMaskType: Sub-block mask type. Elements in upper (or lower) triangle are filled by zeroes in the result.

  • prog: A reference to the program sequence to which the code to perform the softmax will be appended.

void bsSoftmaxInPlace(poplar::Graph &graph, poplar::Tensor sparseTensor, const std::array<int, 2> &dim, const std::array<int, 2> &blockSize, const std::vector<unsigned char> &sparsity, SubBlockMask subBlockMaskType, poplar::program::Sequence &prog, const std::string &debugStr = "")

This function computes softmax on a sparse tensor, in place.

Parameters
  • graph: The Poplar graph.

  • sparseTensor: The input sparse 2D tensor. It must be in a block-sparse format.

  • dim[0]: Number of rows of the original dense tensor.

  • dim[1]: Number of columns of the original dense tensor.

  • blockSize[0]: Block size of the rows.

  • blockSize[1]: Block size of the columns.

  • sparsity: The 2D sparsity mask for the block-sparse tensor, in which ‘1’ is a non zero block and ‘0’ is a zero block.

  • subBlockMaskType: Sub-block mask type. Elements in upper (or lower) triangle are filled by zeroes in the result.

  • prog: A reference to a program sequence which will be appended with the code to perform the softmax.

poplar::Tensor bsSoftmaxGrad(poplar::Graph &graph, poplar::Tensor sparseOut, poplar::Tensor sparseOutGrad, const std::array<int, 2> &dim, const std::array<int, 2> &blockSize, const std::vector<unsigned char> &sparsity, poplar::program::Sequence &prog, const std::string &debugStr = "")

This function computes softmax gradient on a sparse tensor.

Parameters
  • graph: The Poplar graph

  • sparseOut: The outer (activation) sparse 2D tensor. It must be in block-sparse format.

  • sparseOutGrad: The outer gradient sparse 2D tensor. It must be in a block-sparse format.

  • dim[0]: Number of rows of the original dense tensor.

  • dim[1]: Number of columns of the original dense tensor.

  • blockSize[0]: Block size of the rows.

  • blockSize[1]: Block size of the columns.

  • sparsity: The 2D sparsity mask for the block-sparse tensor, in which ‘1’ is a non zero block and ‘0’ is a zero block.

  • prog: A reference to a program sequence which will be appended with the code to perform the softmax.

4.5.2. popsparse/BlockSparseMatMul.hpp

namespace popsparse

Support for sparse matrices.

namespace experimental

Functions

poplar::Tensor createBSMatMulInputLHS(poplar::Graph &graph, const BSMatMulParams &bsMatMul, const std::string &name)

Create a tensor for use as the left operand of block-sparse matrix multiplication.

Return

For non-grouped BSMatMulParams object, if the left matrix is a dense matrix, the return tensor is just a regular 2D matrix. If it is a sparse matrix, the return tensor is an array of non-zero blocks. For group BSMatMulParams object, the return tensor is concatenated along 0 dimension for all ops in a group. tensor for all matrices in a group.

Parameters
  • graph: The Poplar graph.

  • bsMatMul: The object for block-sparse information, includes the sparsity mask, the matrix size, the block size, and the data type.

  • name: The debug name of the created matrix.

poplar::Tensor createBSMatMulInputRHS(poplar::Graph &graph, const BSMatMulParams &bsMatMul, const std::string &name)

Create a tensor for use as the right operand of block-sparse matrix multiplication.

Return

For non-grouped BSMatMulParams object, if the right matrix is a dense matrix, the return tensor is just a regular 2D matrix. If it is a sparse matrix, the return tensor is an array of non zero blocks. For group BSMatMulParams object, the return tensor is concatenated along 0 dimension for all ops in a group. tensor for all matrices in a group.

Parameters
  • graph: The Poplar graph.

  • bsMatMul: The object for block-sparse information, includes the sparsity mask, the matrix size, the block size, and the data type.

  • name: The debug name of the created matrix.

poplar::Tensor bsMatMul(poplar::Graph &graph, const BSMatMulParams &bsMatMul, poplar::program::Sequence &prog, const poplar::Tensor &lhsMatrix, const poplar::Tensor &rhsMatrix, const poplar::OptionFlags &options = {}, const std::string &debugPrefix = "")
class BSMatMulParams
#include <BlockSparseMatMul.hpp>

This class supports block-sparse matrix multiplication.

The class only saves the sparsity mask, the matrix size, the block size, and the data type, which are used to generate the computation graph.

The matrix data is passed in when function bsMatMul() or bsUpdate() gets called.

The purpose of this design is to reuse the instance of this class when only the data of the matrix is changed, and the matrix sparsity does not change.

The current implementation is based on Zoltan to generate the hypergraph partition for all tiles. Zoltan usually runs 2 minutes for ~16k non-zero blocks, which is expensive if it runs for every matrix multiplication.

The right matrix is always sparse, and the left matrix can be dense or sparse.

Public Functions

BSMatMulParams(const std::array<int, 3> &dim, const std::array<int, 3> &blockSize, const std::vector<unsigned char> &rhsSparsity, bool rhsNeedTranspose, poplar::Type inDataType, poplar::Type outDataType, poplar::Type partialDataType, unsigned numGroupsIn = 1)

This constructor is for a dense matrix (left side) multiplying a sparse matrix (right side).

Parameters
  • dim[0]: Number of rows in the left-hand matrix.

  • dim[1]: Number of columns in the left-hand matrix.

  • dim[2]: If the right matrix needs to be transposed, this is the number of rows in the right-hand matrix. Otherwise, it is number of columns in the right-hand matrix.

  • blockSize[0]: Block size of the rows in the left-hand matrix.

  • blockSize[1]: Block size of the columns in the left-hand matrix.

  • blockSize[2]: Block size of the columns in the right-hand matrix.

  • rhsSparsity: The 2D sparsity mask for right hand block sparse matrix, in which ‘1’ is a non zero block and ‘0’ is a zero block. For group operation this parameter is concatenated sparsity masks for all ops in a group.

  • rhsNeedTranspose: Whether the right hand matrix need be transposed. This is mostly to support backward pass. If this parameter is true:

    • dim, blockSize must conform to transposed shape

    • rhsSparsity must be in original, non-transposed order

    • rhsMatrix in bsMatMul() must contain data within blocks in original, non-transposed order

  • inDataType: Input data type.

  • outDataType: Output data type.

  • partialDataType: Partial data type.

  • numGroupsIn: number of groups for group operation or 1 for non-group operation

BSMatMulParams(const std::array<int, 3> &dim, const std::array<int, 3> &blockSize, const std::vector<unsigned char> &lhsSparsity, bool lhsNeedTranspose, const std::vector<unsigned char> &rhsSparsity, bool rhsNeedTranspose, poplar::Type inDataType, poplar::Type outDataType, poplar::Type partialDataType, unsigned numGroupsIn = 1)

This constructor is for a sparse matrix multiplied by a sparse matrix.

It is not supported.

BSMatMulParams(const std::array<int, 3> &dim, const std::array<int, 3> &blockSize, const std::vector<unsigned char> &resSparsity, poplar::Type inDataType, poplar::Type outDataType, poplar::Type partialDataType, SubBlockMask subBlockMask = SubBlockMask::None, unsigned numGroupsIn = 1)

This constructor is for a dense matrix multiplying a dense matrix.

The multiply is performed as a sparse operation and the result stored as a sparse matrix.

Parameters
  • dim[0]: Number of rows in the left-hand matrix.

  • dim[1]: Number of columns in the left-hand matrix.

  • dim[2]: Number of columns in the right-hand matrix.

  • blockSize[0]: Block size of the rows in the left-hand matrix.

  • blockSize[1]: Block size of the columns in the left-hand matrix.

  • blockSize[2]: Block size of the columns in the right-hand matrix. The block size of the columns in the left-hand matrix equals the block size of the rows in the right-hand matrix.

  • resSparsity: The 2D sparsity mask for the result block-sparse matrix, in which ‘1’ is a non-zero block and ‘0’ is a zero block.

  • resSparsity: The 2D sparsity mask for the result block sparse matrix, in which ‘1’ is a non zero block and ‘0’ is a zero block. For group operation this parameter is concatenated sparsity masks for all ops in a group.

  • outDataType: Output data type.

  • partialDataType: Partial data type.

  • SubBlockMask: The mask inside a block. See SubBlockMask in BlockSparse.hpp for details.

  • numGroupsIn: number of groups for group operation or 1 for non-group operation

BSMatMulParams(BSMatMulParams &&other)
~BSMatMulParams()

Public Members

std::unique_ptr<BSMatMulImpl> impl

Note: in the API, the sparse-weight matrix representing the parameters of the fully-connected layer per group is W, with a dense shape of [outputChannelsPerGroup, inputChannelsPerGroup].

The equivalent dense operations done for the different passes are where each multiplication is per group.

  • Fwd/Inf: Ao = W * Ai

    Where: - Ao has shape [outputChannelsPerGroup, batchSize] - Ai has shape [inputChannelsPerGroup, batchSize]

  • GradA: Gi = W’ * Go

    Where: - Go has shape [outputChannelsPerGroup, batchSize] - Gi has shape [inputChannelsPerGroup, batchSize]

  • GradW: Gw = Go * Ai

4.5.3. popsparse/FullyConnected.hpp

namespace popsparse

Support for sparse matrices.

namespace dynamic

Support for dynamic sparse matrices.

Functions

SparseTensor createFullyConnectedWeights(poplar::Graph &graph, const poplar::Type &inputType, const FullyConnectedParams &params, const std::string &debugName = "", const poplar::OptionFlags &options = {}, PlanningCache *cache = nullptr)

Create a sparse tensor that is used as the weights W for a fully connected layer.

The following options are available:

  • availableMemoryProportion Decimal between 0 and 1 [=0.6]

    The maximum proportion of available memory on each tile that this layer should consume temporarily during the course of the operation.

  • metaInfoBucketOversizeProportion Decimal between 0 and 1 [=0.3]

    This specifies additional elements to allocate in each bucket of meta-information as a proportion of the required size for a perfectly uniformly distributed sparsity pattern.

  • doGradAPass (true, false) [=false]

    doGradWPass (true, false) [=false]

    Indicate which passes are present for the operation of the layer as a whole. It is assumed that the forward pass is always present.

  • partialsType poplar::Type [=poplar::FLOAT]

    The type to use for partial results.

  • sharedBuckets (true, false) [=true]

    If set, forces the same buckets to be used for all three passes.

Return

A tensor with sparse representation of weights for the fully connected layer.

Parameters
  • graph: The Poplar graph.

  • inputType: The type for inputs to the operation.

  • params: Parameters for the fully connected layer.

  • debugPrefix: Optional prefix for all debug names added to the graph.

  • options: Implementation options for the fully connected layer.

  • cache: Optional pointer to planning cache to use.

poplar::Tensor createFullyConnectedInput(poplar::Graph &graph, const poplar::Type &inputType, const FullyConnectedParams &params, const std::string &debugName = "", const poplar::OptionFlags &options = {}, PlanningCache *cache = nullptr)

Create a dense tensor that is used as the input activations for a fully connected layer.

This returned tensor is of shape [batchSize, inputChannelsPerGroup].

Parameters
  • graph: The Poplar graph.

  • inputType: The type for inputs to the operation.

  • params: Parameters for the fully connected layer.

  • debugPrefix: Optional prefix for all debug names added to the graph.

  • options: Implementation options for the fully connected layer. See createFullyConnectedWeights() for details.

  • cache: Optional pointer to planning cache to use.

poplar::Tensor fullyConnectedFwd(poplar::Graph &graph, const SparseTensor &weights, const poplar::Tensor &activations, const FullyConnectedParams &fcParams, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, PlanningCache *cache = nullptr)

Run a fully connected forward (or inference) pass.

The sparse-weights tensor is made up of meta information for the sparsity and the non-zero values. Does the Fwd operation described in the Note above but with input and output transposed.

The meta information for the sparse weights tensor must be created for the forward (or inference) pass and should be created by use of the createFullyConnectedWeights() function.

Return

The tensor holding the result. This tensor will be created, added to the graph and mapped to tiles. The result tensor is of shape [batchSize][outputChannelsPerGroup * numGroups]

Parameters
  • graph: The Poplar graph.

  • weights: Sparsity information of the weights tensor.

  • activations: The dense activations have shape [batchSize][inputChannelsPerGroup * numGroups]

  • fcParams: Fully connected layer parameters.

  • prog: A reference to a program sequence which will be appended with the code to perform the forward operation.

  • debugPrefix: A debug prefix added to compute set and tensor names.

  • options: The structure describing options on how the operation should be implemented. See createFullyConnectedWeights() for details.

  • cache: Optional pointer to planning cache to use.

poplar::Tensor fullyConnectedGradA(poplar::Graph &graph, const SparseTensor &weights, const poplar::Tensor &gradients, const FullyConnectedParams &fcParams, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, PlanningCache *cache = nullptr)

Run a fully connected GradA pass.

The sparse-weights tensor is made up of meta information for the sparsity and the non-zero values. Does the GradA computation as described in the Note above but with input and output transposed.

The meta information for the sparse-weights tensor must be created for the GradA pass and should be created by use of createFullyConnectedWeights() function.

Return

The tensor holding the result. This tensor will be created, added to the graph and mapped to tiles. The tensor is of shape [batchSize][inputChannelsPerGroup * numGroups]

Parameters
  • graph: The Poplar graph.

  • weights: Sparsity information of the weights tensor.

  • gradients: The dense loss gradients with respect to output activations and are of shape [batchSize][outputChannelsPerGroup] .

  • fcParams: Fully connected layer parameters.

  • prog: A reference to a program sequence which will be appended with the code to perform the GradA operation.

  • debugPrefix: A debug prefix added to compute set and tensor names.

  • options: The structure describing options on how the operation should be implemented. See createFullyConnectedWeights() for details.

  • cache: Optional pointer to planning cache to use.

poplar::Tensor fullyConnectedSparseGradW(poplar::Graph &graph, const poplar::Tensor sparsityMetaInfo, const poplar::Tensor &gradA, const poplar::Tensor &activations, const FullyConnectedParams &fcParams, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, PlanningCache *cache = nullptr)

Run a fully connected GradW pass to compute sparse gradients.

The layout of the returned tensor is exactly as that of the representation of the weights NZ values so that any elementwise operation may be done between the two.

The actual implementation differs from that in the Note above as the transpose of the gradients and activations are supplied as parameters to this function.

Return

The tensor holding the result. This tensor will be created, added to the graph and mapped to tiles.

Parameters
  • graph: The Poplar graph.

  • weightMetaInfo: Meta information for sparse weights. See SparseTensor representation.

  • gradA: Dense gradients wrt output activations of shape [batchSize][outputChannelsPerGroup * numGroups]

  • activations: Input activations of shape [batchSize][inputChannelsPerGroup * numGroups]

  • fcParams: Fully connected layer parameters.

  • prog: A reference to a program sequence which will be appended with the code to perform the GradW operation.

  • debugPrefix: A debug prefix added to compute set and tensor names.

  • options: The structure describing options on how the operation should be implemented. See createFullyConnectedWeights() for details.

  • cache: Optional pointer to planning cache to use.

std::tuple<unsigned, unsigned, unsigned> fullyConnectedDenseGradWSerialSplits(const poplar::Graph &graph, const poplar::Type &inputType, const FullyConnectedParams &fcParams, const poplar::OptionFlags &options_ = {}, PlanningCache *cache = nullptr)

Report the serial splitting of a dense gradW output given the memory proportion limit given in options.

A dense gradW output is of shape [numGroups][inputSize][outputSize]

Return

Serial splits for each of the output dimensions [numGroups][inputSize][outputSize].

Parameters
  • graph: The Poplar graph.

  • inputType: The type of input.

  • params: Fully connected params.

  • options: The structure describing options on how the operation should be implemented. See createFullyConnectedWeights() for details.

  • cache: Optional pointer to planning cache to use.

class PlanningCache

Public Functions

PlanningCache()
~PlanningCache()

Public Members

std::unique_ptr<PlanningCacheImpl> impl

4.5.4. popsparse/FullyConnectedParams.hpp

namespace popsparse

Support for sparse matrices.

namespace dynamic

Support for dynamic sparse matrices.

Functions

std::ostream &operator<<(std::ostream &os, const FullyConnectedParams &p)
class FullyConnectedParams

Fully connected parameters

These are the parameters which define a fully connected layer.

Matrix multiplications for the different passes are as follows

  • For pass = FC_INFERENCE or FC_TRAINING_FWD

    [numGroups][outputChannelsPerGroup][inputChannelsPerGroup] * [numGroups][inputChannelsPerGroup][batchSize]

  • For pass = FC_TRAINING_GRADA

    [numGroups][inputChannelsPerGroup][outputChannelsPerGroup] * [numGroups][outputChannelsPerGroup][batchSize]

  • For pass = FC_TRAINING_GRADW

    [numGroups][outputChannelsPerGroup][batchSize] * [numGroups][batchSize][inputChannelsPerGroup]

FullyConnectedParams createWithNzRatio(const SparsityParams &sparsityParams, double nzRatio, std::size_t batchSize, std::size_t numGroups, std::size_t inputChannels, std::size_t outputChannels)

Create parameters with the specified ratio of non-zero elements.

FullyConnectedParams createWithNumNonZeroValues(const SparsityParams &sparsityParams, std::size_t numNonZeroElems, std::size_t batchSize, std::size_t numGroups, std::size_t inputChannels, std::size_t outputChannels)

Create parameters with the specified number of non-zero elements.

Public Functions

std::size_t getBatchSize() const
std::size_t getNumGroups() const
std::size_t getInputChannelsPerGroup() const
std::size_t getOutputChannelsPerGroup() const
struct SparsityParams getSparsityParams() const
double getNzRatio() const
std::size_t getNumNonZeroValues() const

Private Members

SparsityParams sparsityParams

Sparsity parameters.

double nzRatio

Proportion of weights which are non-zero in range [0,1].

std::size_t batchSize
std::size_t numGroups
std::size_t inputChannelsPerGroup
std::size_t outputChannelsPerGroup

Friends

friend bool operator<(const FullyConnectedParams &a, const FullyConnectedParams &b)

4.5.5. popsparse/SparsePartitioner.hpp

namespace popsparse

Support for sparse matrices.

template<typename T>
class PartitionerImpl
namespace dynamic

Support for dynamic sparse matrices.

template<typename T>
class Partitioner
#include <SparsePartitioner.hpp>

Class to translate and encode sparsity information for a fully connected layer.

See createFullyConnectedWeights() for details of the options.

Public Functions

const PartitionerImpl<T> &getImpl() const
Partitioner(const FullyConnectedParams &params, const poplar::Type &dataType, const poplar::Target &target, const poplar::OptionFlags &options, PlanningCache *cache = {})
~Partitioner()
SparsityDataImpl<T> createSparsityDataImpl(const CSCMatrix<T> &matrix_) const

Create implementation sparsity representation for a compressed sparse columns (CSC) matrix.

SparsityDataImpl<T> createSparsityDataImpl(const CSRMatrix<T> &matrix_) const

Creates implementation sparsity representation for a compressed sparse rows (CSR) matrix.

SparsityDataImpl<T> createSparsityDataImpl(const COOMatrix<T> &matrix_) const

Creates implementation sparsity representation for a coordinate (COO) format matrix.

COOMatrix<T> sparsityDataImplToCOOMatrix(const SparsityDataImpl<T> &sparsityDataImpl) const

Create a coordinate (COO) representation matrix from implementation sparsity representation.

The COO entries are ordered by row first, and then columns.

CSRMatrix<T> sparsityDataImplToCSRMatrix(const SparsityDataImpl<T> &sparsityDataImpl) const

Create compressed sparse rows (CSR) representation from implementation sparsity representation.

CSCMatrix<T> sparsityDataImplToCSCMatrix(const SparsityDataImpl<T> &sparsityDataImpl) const

Create compressed sparse columns (CSC) representation from implementation sparsity representation.

Private Members

std::unique_ptr<PartitionerImpl<T>> impl
template<typename T>
struct SparsityDataImpl
#include <SparsePartitioner.hpp>

Encoding of sparsity representation.

Public Members

std::vector<std::size_t> metaInfo

Meta information representing sparsity for each tile.

std::vector<T> nzValues

The non-zero values of the sparse matrix.

4.5.6. popsparse/SparseStorageFormats.hpp

namespace popsparse

Support for sparse matrices.

template<typename T>
struct COOMatrix
#include <SparseStorageFormats.hpp>

Sparse matrix stored as coordinate (COO) or triplets format.

Public Functions

COOMatrix(const std::vector<T> &nzValues, const std::vector<std::size_t> &columnIndices, const std::vector<std::size_t> &rowIndices)
COOMatrix(std::vector<T> &&nzValues, std::vector<std::size_t> &&columnIndices, std::vector<std::size_t> &&rowIndices)
COOMatrix(std::size_t numNZValues)

Constructor to allocate memory.

COOMatrix() = default
COOMatrix(const COOMatrix&) = default

Public Members

std::vector<T> nzValues

The non-zero values of the sparse matrix.

std::vector<std::size_t> columnIndices

Corresponding column indices for the non-zero values.

std::vector<std::size_t> rowIndices

Corresponding row indices for the non-zero values.

template<typename T>
struct CSCMatrix
#include <SparseStorageFormats.hpp>

Sparse matrix stored in compressed sparse columns (CSC) format for a matrix of size [M x N].

There is no explicit encoding of M in the storage. The number of column indices is equal to N + 1.

Public Functions

CSCMatrix(const std::vector<T> &nzValues, const std::vector<std::size_t> &columnIndices, const std::vector<std::size_t> &rowIndices)
CSCMatrix(std::vector<T> &&nzValues, std::vector<std::size_t> &&columnIndices, std::vector<std::size_t> &&rowIndices)
CSCMatrix(std::size_t numNZValues, std::size_t numColumns)

Constructor to allocate memory.

CSCMatrix() = default
CSCMatrix(const CSCMatrix&) = default

Public Members

std::vector<T> nzValues

The non-zero values of the sparse matrix.

std::vector<std::size_t> columnIndices

Indices where non-zero values for each column start.

There are a total of N+1 entries with the last entry equal to the number of entries in nzValues.

std::vector<std::size_t> rowIndices

The row index of each element in nzValues.

There are as many entries as nzValues.

template<typename T>
struct CSRMatrix
#include <SparseStorageFormats.hpp>

Sparse matrix stored in compressed sparse rows (CSR) format for a matrix of size [M x N].

There is no explicit encoding of N in the storage. The number of row indices is equal to M + 1.

Public Functions

CSRMatrix(const std::vector<T> &nzValues, const std::vector<std::size_t> &columnIndices, const std::vector<std::size_t> &rowIndices)
CSRMatrix(std::vector<T> &&nzValues, std::vector<std::size_t> &&columnIndices, std::vector<std::size_t> &&rowIndices)
CSRMatrix(std::size_t numNZValues, std::size_t numRows)
CSRMatrix() = default
CSRMatrix(const CSRMatrix&) = default

Public Members

std::vector<T> nzValues

The non-zero values of the sparse matrix.

std::vector<std::size_t> columnIndices

The column index of each element in nzValues.

There are as many entries as nzValues.

std::vector<std::size_t> rowIndices

Indices where non-zero values of each row start.

There are a total of M+1 entries with the last entry equal to the number of entries in nzValues.

4.5.7. popsparse/SparseTensor.hpp

namespace popsparse

Support for sparse matrices.

namespace dynamic

Support for dynamic sparse matrices.

class SparseTensor
#include <SparseTensor.hpp>

Representation of a sparse tensor.

Public Functions

SparseTensor() = default
SparseTensor(const SparseTensor &t) = default
SparseTensor(const poplar::Tensor &metaInfo, const poplar::Tensor &nzValues)
poplar::Tensor getMetaInfoTensor() const
poplar::Tensor getNzValuesTensor() const

Private Members

poplar::Tensor metaInfo

Tensor containing positional sparsity information.

poplar::Tensor nzValues

Tensor contains non zero values.

4.5.8. popsparse/SparsityParams.hpp

namespace popsparse

Support for sparse matrices.

namespace dynamic

Support for dynamic sparse matrices.

Enums

enum SparsityType

Sparsity type.

Values:

enumerator Element

Sparsity is defined at an element level.

enum SparsityStructure

Sparsity structure.

Values:

enumerator Unstructured

Functions

std::ostream &operator<<(std::ostream &os, const SparsityType &t)
std::ostream &operator<<(std::ostream &os, const SparsityStructure &s)
struct SparsityParams

Public Functions

SparsityParams(SparsityType type = SparsityType::Element, SparsityStructure structure = SparsityStructure::Unstructured)
SparsityParams(const SparsityParams&) = default

Public Members

SparsityType type

sparsity type.

SparsityStructure structure

sparsity structure.

Friends

friend bool operator<(const SparsityParams &a, const SparsityParams &b)
friend std::ostream &operator<<(std::ostream &os, const SparsityParams &p)

4.6. Neural network functions (popnn)

Functions used in neural networks (for example, non-linearities, pooling, loss functions).

4.6.1. popnn/BatchNorm.hpp

namespace popnn

Functions used in neural networks.

namespace bn

Functions

std::pair<poplar::Tensor, poplar::Tensor> batchNormStatistics(poplar::Graph &graph, const poplar::Tensor acts, float eps, poplar::program::Sequence &prog, bool unbiasedVarEstimate, bool stableAlgo = false, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Estimate mean and inverse of standard deviation of batched activations.

poplar::Tensor batchNormWhiten(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &mean, const poplar::Tensor &invStdDev, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Whiten activations given mean and standard deviation.

std::pair<poplar::Tensor, poplar::Tensor> batchNormalise(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &gamma, const poplar::Tensor &beta, const poplar::Tensor &mean, const poplar::Tensor &invStdDev, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Batch normalise activations given mean, standard deviation and batch norm parameters.

The result is two tensors

  1. normalised activations

  2. whitened activations

poplar::Tensor batchNormalise(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &combinedMultiplicand, const poplar::Tensor &addend, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Computes the output of batch normalisation given:

  • combinedMultiplicand = gamma / stdDev

  • addend = beta - gamma * mean / stdDev

std::pair<poplar::Tensor, poplar::Tensor> batchNormParamGradients(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &gradsIn, const poplar::Tensor &mean, const poplar::Tensor &iStdDev, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute gradients w.r.t parameters required for parameter update.

std::pair<poplar::Tensor, poplar::Tensor> batchNormParamGradients(poplar::Graph &graph, const poplar::Tensor &actsWhitened, const poplar::Tensor &gradsIn, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute gradients w.r.t parameters required for parameter update.

poplar::Tensor batchNormGradients(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &gradsIn, const poplar::Tensor &mean, const poplar::Tensor &invStdDev, const poplar::Tensor &gamma, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute gradients w.r.t input activations for the batch norm layer.

i.e. gradients are propagated through the complete layer including statistics computation.

poplar::Tensor batchNormGradients(poplar::Graph &graph, const poplar::Tensor &actsWhitened, const poplar::Tensor &gradsIn, const poplar::Tensor &invStdDev, const poplar::Tensor &gamma, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute gradients w.r.t input activations for the batch norm layer.

i.e. gradients are propagated through the complete layer including statistics computation.

void batchNormParamUpdate(poplar::Graph &graph, const poplar::Tensor &gammaDelta, const poplar::Tensor &betaDelta, float scale, poplar::Tensor &gamma, poplar::Tensor &beta, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void batchNormParamUpdate(poplar::Graph &graph, const poplar::Tensor &gammaDelta, const poplar::Tensor &betaDelta, const poplar::Tensor &scale, poplar::Tensor &gamma, poplar::Tensor &beta, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

4.6.2. popnn/GroupNorm.hpp

namespace popnn

Functions used in neural networks.

namespace gn

Functions

std::pair<poplar::Tensor, poplar::Tensor> groupNormStatistics(poplar::Graph &graph, const poplar::Tensor acts, float eps, poplar::program::Sequence &prog, unsigned numGroups, bool unbiasedVarEstimate, bool stableAlgo = false, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Estimate mean and inverse of standard deviation of activations.

poplar::Tensor groupNormWhiten(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &mean, const poplar::Tensor &invStdDev, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Whiten activations given mean and standard deviation.

std::pair<poplar::Tensor, poplar::Tensor> groupNormalise(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &gamma, const poplar::Tensor &beta, const poplar::Tensor &mean, const poplar::Tensor &invStdDev, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Group normalise activations given mean, standard deviation and batch norm parameters.

The result is two tensors

  1. normalised activations

  2. whitened activations

std::pair<poplar::Tensor, poplar::Tensor> groupNormParamGradients(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &gradsIn, const poplar::Tensor &mean, const poplar::Tensor &iStdDev, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute gradients w.r.t parameters for parameter update.

std::pair<poplar::Tensor, poplar::Tensor> groupNormParamGradients(poplar::Graph &graph, const poplar::Tensor &actsWhitened, const poplar::Tensor &gradsIn, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute gradients w.r.t parameters for parameter update.

poplar::Tensor groupNormGradients(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &gradsIn, const poplar::Tensor &mean, const poplar::Tensor &invStdDev, const poplar::Tensor &gamma, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute gradients w.r.t input activations for the group norm layer.

Gradients are propagated through the complete layer including statistics computation.

poplar::Tensor groupNormGradients(poplar::Graph &graph, const poplar::Tensor &actsWhitened, const poplar::Tensor &gradsIn, const poplar::Tensor &invStdDev, const poplar::Tensor &gamma, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute gradients w.r.t input activations for the group norm layer.

Gradients are propagated through the complete layer including statistics computation.

void groupNormParamUpdate(poplar::Graph &graph, const poplar::Tensor &gammaDelta, const poplar::Tensor &betaDelta, float scale, poplar::Tensor &gamma, poplar::Tensor &beta, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
void groupNormParamUpdate(poplar::Graph &graph, const poplar::Tensor &gammaDelta, const poplar::Tensor &betaDelta, const poplar::Tensor &scale, poplar::Tensor &gamma, poplar::Tensor &beta, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

4.6.3. popnn/Gru.hpp

namespace popnn

Functions used in neural networks.

namespace gru

Functions

uint64_t getBasicGruCellFwdFlops(const GruParams &params)
uint64_t getBasicGruCellBwdFlops(const GruParams &params)
uint64_t getBasicGruCellWuFlops(const GruParams &params)
poplar::Tensor createInput(poplar::Graph &graph, const GruParams &params, const std::string &name, const poplar::OptionFlags &options = {}, poplin::matmul::PlanningCache *planningCache = nullptr)

Create an input tensor of shape [numSteps, batchSize, inputSize] which is optimally mapped to multiply the whole input sequence in a single matrix multiply operation.

GRU options

  • availableMemoryProportion Decimal between 0 and 1 (inclusive)

    See createWeights().

  • inferenceOnly (true, false) [=true]

    Sets convolution pass to INFERENCE_FWD if true; TRAINING_FWD otherwise. See createWeights().

  • partialsType (half, float) [=float]

    See createWeights().

Return

A tensor created in the graph of shape: [timeSteps, batchSize, inputSize]

Parameters
  • graph: Graph object

  • params: The GRU parameters

  • name: String annotation

  • options: Any implementation/debug options for the GRU

  • planningCache: A poplin matrix multiply planning cache

poplar::Tensor createInitialState(poplar::Graph &graph, const GruParams &params, const std::string &debugPrefix, const poplar::OptionFlags &options, poplin::matmul::PlanningCache *cache)
std::pair<poplar::Tensor, poplar::Tensor> createWeightsKernel(poplar::Graph &graph, const GruParams &params, const std::string &name, const poplar::OptionFlags &options = {}, poplin::matmul::PlanningCache *planningCache = nullptr)

Create the weights kernel used to weight the input and output of a GRU.

Returns the inputWeights and outputWeights.

poplar::Tensor createWeightsBiases(poplar::Graph &graph, const GruParams &params, const std::string &name, const poplar::OptionFlags &options = {}, poplin::matmul::PlanningCache *planningCache = nullptr)

Create the weights biases.

GruWeights createWeights(poplar::Graph &graph, const GruParams &params, const std::string &name, const poplar::OptionFlags &options = {}, poplin::matmul::PlanningCache *planningCache = nullptr)

Create the weights (both kernel and biases) used to weight the input and output of a GRU.

poplar::Tensor gruFwd(poplar::Graph &graph, const GruParams &params, const poplar::Tensor &stateInit, const poplar::Tensor &in, const GruWeights &weights, poplar::Tensor *intermediates, poplar::program::Sequence &fwdProg, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, poplin::matmul::PlanningCache *planningCache = nullptr)

Calculate the result of applying a GRU across a sequence.

The following are the formulas for a GRU cell:

  • r_t = sigmod(w_r * x_t + u_r * h_t-1 + b_r)

  • u_t = sigmod(w_u * x_t + u_u * h_t-1 + b_u)

  • c_t = tanh(w_c * x_t + u_c * (r_t x h_t-1) + b_c)

  • h_t = u_t x h_t-1 + (1 - u_t) x c_t

Where:

  • * is matrix multiplication

  • x is Hadamard product

The GRU is run for seqSize steps each with a batch of size batchSize and input size inputSize and output size outputSize. The total number of units within each GRU cell is BASIC_GRU_CELL_NUM_UNITS.

Return

The output of the GRU. Depending on the outputFullSequence parameter the output tensor is either the output of the last timestep in the shape [batch, outputSize] or it is the sequence of outputs for every timestep in the shape [timesteps, batch, outputSize]

Parameters
  • graph: Graph to which the GRU cell belongs.

  • params: The parameters of the GRU.

  • stateInit: Initial state for the GRU.

  • in: The input tensor to the GRU of dimension [timesteps, batch, inputSize].

  • weights: The GRU weights structure.

  • [out] intermediates: Intermediate results that are retained in the forward pass of training for use in the backward pass. It includes the data for reset gate, update gate, candidate, and output if outputFullSequence is false. This argument should be set to null if we are only doing inference.

  • fwdProg: Program sequence.

  • debugPrefix: String used as prefix for compute sets.

  • options: GRU implementation options. See createInput().

  • planningCache: The matmul planning cache.

poplar::Tensor gruBwd(poplar::Graph &graph, const GruParams &params, poplar::program::Sequence &prog, const poplar::Tensor &fwdOutputInit, const poplar::Tensor &fwdIntermediatesSeq, const GruWeights &weights, const poplar::Tensor &fwdInputSeq, const poplar::Tensor &fwdOutput, const poplar::Tensor &gradLayerNext, poplar::Tensor *inputGrad, poplar::Tensor *bwdIntermediates, const std::string &debugPrefix, const poplar::OptionFlags &options_, poplin::matmul::PlanningCache *planningCache)

Run GRU backward pass.

The backward pass executes in reverse order compared to the forward pass. If the forward steps for a GRU layer are sf = {0, 1, 2, …, S - 1} then the backward steps run for sb = {S - 1, S - 2, …. , 1, 0}.

Return

The gradient of the initial output.

Parameters
  • graph: Graph to which the GRU cell belongs.

  • params: The parameters of the GRU.

  • prog: Program sequence.

  • fwdOutputInit: Forward output tensor for initial step.

  • fwdIntermediatesSeq: Intermediates results from the forward pass.

  • weights: The GRU weights structure.

  • fwdInputSeq: The input tensor to the GRU of shape: [timesteps, batch, inputSize]

  • fwdOutput: The output tensor from the forward pass. Depending on the outputFullSequence parameter this is either the output for the last timestep or it is a sequence of outputs for each timestep.

  • gradLayerNext: The gradients of the output. Depending on the outputFullSequence parameter this is either the gradient of the output for the last timestep or it is a sequence output gradients for each timestep.

  • [out] *inputGrad: The gradients of the inputs - may be null if this information is not required.

  • [out] *bwdIntermediates: Intermediates gradients that are retained in the backward pass of training for use in the weight update. It includes the derivatives for reset gate, update gate, and candidate. This argument should be set to null if you do not need to calculate weight deltas.

  • debugPrefix: String used as prefix for compute sets.

  • options: GRU implementation options. See createInput().

  • planningCache: The matmul planning cache.

GruWeights gruWU(poplar::Graph &graph, const GruParams &params, poplar::program::Sequence &prog, const poplar::Tensor &fwdOutputInit, const poplar::Tensor &fwdIntermediates, const poplar::Tensor &bwdIntermediates, const GruWeights &weights, const poplar::Tensor &input, const poplar::Tensor &output, const std::string &debugPrefix, const poplar::OptionFlags &options_, poplin::matmul::PlanningCache *planningCache)

Run a standalone weight update pass.

Takes intermediates and gradients from the backward pass and calculates and returns weight deltas.

Return

A set of weight gradients to sum with weights.

Parameters
  • graph: Graph to which the GRU cell belongs.

  • params: The parameters of the GRU.

  • prog: Program sequence to add operations to.

  • fwdOutputInit: Forward output tensor for initial step.

  • fwdIntermediates: Intermediate results from the forward pass.

  • bwdIntermediates: Intermediate results from the backward pass.

  • weights: The GRU weights structure.

  • input: The input tensor to the GRU of shape: [timesteps, batch, inputSize]

  • output: The output tensor from the forward pass. Depending on the outputFullSequence parameter this is either the output for the last timestep or it is a sequence of outputs for each timestep.

  • debugPrefix: String used as a prefix to compute sets and tensors added to the graph.

  • options: GRU implementation options. See createInput().

  • planningCache: The matmul planning cache.

poplar::Tensor gruBwdWithWU(poplar::Graph &graph, const GruParams &params, poplar::program::Sequence &prog, const poplar::Tensor &fwdOutputInit, const poplar::Tensor &fwdIntermediates, const GruWeights &weights, const poplar::Tensor &input, const poplar::Tensor &output, const poplar::Tensor &outputGrad, poplar::Tensor *inputGrad, GruWeights &weightsGrad, const std::string &debugPrefix, const poplar::OptionFlags &options_, poplin::matmul::PlanningCache *planningCache)

Run a combined GRU backward and weight update pass.

Use this combined backward and weight update pass in preference to gruBwd and gruWU separately in order to allow the most efficient implementation to be chosen if you do not need to split the operation.

Return

The gradient of the initial output.

Parameters
  • graph: Graph to which the GRU cell belongs.

  • params: The parameters of the GRU.

  • prog: Program sequence.

  • fwdOutputInit: Forward output tensor for initial step.

  • fwdIntermediates: Intermediates results from the forward pass.

  • weights: The GRU weights structure.

  • input: The input tensor to the GRU of shape: [timesteps, batch, inputSize]

  • output: The output tensor from the forward pass. Depending on the outputFullSequence parameter this is either the output for the last timestep or it is a sequence of outputs for each timestep.

  • outputGrad: The gradients of the output. Depending on the outputFullSequence parameter this is either the gradient of the output for the last timestep or it is a sequence output gradients for each timestep.

  • [out] *inputGrad: The gradients of the inputs - may be null if this information is not required.

  • weightsGrad: A set of weight deltas to sum with weights.

  • debugPrefix: String used as prefix for compute sets.

  • options: GRU implementation options. See createInput().

  • planningCache: The matmul planning cache.

struct GruParams
#include <Gru.hpp>

Structure representing the parameters of the GRU.

Public Functions

GruParams() = default
GruParams(poplar::Type dataType, std::size_t batchSize, std::size_t timeSteps, std::vector<std::size_t> layerSizes)
GruParams(const GruParams &other)

Public Members

poplar::Type dataType
std::size_t batchSize
std::size_t timeSteps
std::vector<std::size_t> layerSizes
bool outputFullSequence = true
bool calcInputGradients = true
struct GruWeights
#include <Gru.hpp>

Structure holding all the parameters of a GRU cell, or the deltas for those parameters (depending on the context).

Public Members

poplar::Tensor inputWeights
poplar::Tensor outputWeights
poplar::Tensor biases

4.6.4. popnn/GruDef.hpp

Enums

enum BasicGruCellUnit

The units within a basic GRU cell.

In general all of these require a weight matrix, a bias and a non-linearity. Typically, a fixed type of non-linearity is associated with each type of unit.

Values:

enumerator BASIC_GRU_CELL_RESET_GATE
enumerator BASIC_GRU_CELL_UPDATE_GATE
enumerator BASIC_GRU_CELL_CANDIDATE
enumerator BASIC_GRU_CELL_NUM_UNITS

4.6.5. popnn/InstanceNorm.hpp

namespace popnn

Functions used in neural networks.

namespace in

Functions

std::pair<poplar::Tensor, poplar::Tensor> instanceNormStatistics(poplar::Graph &graph, const poplar::Tensor acts, float eps, poplar::program::Sequence &prog, bool unbiasedVarEstimate, bool stableAlgo, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Estimate mean and inverse of standard deviation of activations.

poplar::Tensor instanceNormWhiten(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &mean, const poplar::Tensor &invStdDev, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Whiten activations given mean and standard deviation.

std::pair<poplar::Tensor, poplar::Tensor> instanceNormalise(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &gamma, const poplar::Tensor &beta, const poplar::Tensor &mean, const poplar::Tensor &invStdDev, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Instance normalise activations given mean, standard deviation and norm parameters.

The result is two tensors

  1. normalised activations

  2. whitened activations

std::pair<poplar::Tensor, poplar::Tensor> instanceNormParamGradients(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &gradsIn, const poplar::Tensor &mean, const poplar::Tensor &iStdDev, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute gradients w.r.t parameters for parameter update.

std::pair<poplar::Tensor, poplar::Tensor> instanceNormParamGradients(poplar::Graph &graph, const poplar::Tensor &actsWhitened, const poplar::Tensor &gradsIn, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute gradients w.r.t parameters for parameter update.

poplar::Tensor instanceNormGradients(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &gradsIn, const poplar::Tensor &mean, const poplar::Tensor &invStdDev, const poplar::Tensor &gamma, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute gradients w.r.t input activations for the instance norm layer.

Gradients are propagated through the complete layer including statistics computation.

poplar::Tensor instanceNormGradients(poplar::Graph &graph, const poplar::Tensor &actsWhitened, const poplar::Tensor &gradsIn, const poplar::Tensor &invStdDev, const poplar::Tensor &gamma, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute gradients w.r.t input activations for the instance norm layer.

Gradients are propagated through the complete layer including statistics computation.

void instanceNormParamUpdate(poplar::Graph &graph, const poplar::Tensor &gammaDelta, const poplar::Tensor &betaDelta, float scale, poplar::Tensor &gamma, poplar::Tensor &beta, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Update parameters given gradients w.r.t. parameters.

void instanceNormParamUpdate(poplar::Graph &graph, const poplar::Tensor &gammaDelta, const poplar::Tensor &betaDelta, const poplar::Tensor &scale, poplar::Tensor &gamma, poplar::Tensor &beta, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})
uint64_t getFwdFlops(uint64_t numChannels, uint64_t actsPerChannel, bool computeEstimates)

In flop computation, the following applies:

  • Acts per channel:

    • for fc layers: the total number of batches.

    • for conv layers: the field size per channel * batch size.

  • Number of channels:

    • for fc layers: the total number of activations in a batch.

    • for conv layers: the total number of channels.

uint64_t getBwdFlops(uint64_t numChannels, uint64_t actsPerChannel)
uint64_t getWuFlops(uint64_t numChannels, uint64_t actsPerChannel)

4.6.6. popnn/LayerNorm.hpp

namespace popnn

Functions used in neural networks.

namespace ln

Functions

std::pair<poplar::Tensor, poplar::Tensor> layerNormStatistics(poplar::Graph &graph, const poplar::Tensor acts, float eps, poplar::program::Sequence &prog, bool unbiasedVarEstimate, bool stableAlgo = false, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Estimate mean and inverse of standard deviation of activations.

poplar::Tensor layerNormWhiten(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &mean, const poplar::Tensor &invStdDev, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Whiten activations given mean and standard deviation.

std::pair<poplar::Tensor, poplar::Tensor> layerNormalise(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &gamma, const poplar::Tensor &beta, const poplar::Tensor &mean, const poplar::Tensor &invStdDev, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Layer normalise activations given mean, standard deviation and norm parameters.

The result is two tensors:

  1. normalised activations

  2. whitened activations

std::pair<poplar::Tensor, poplar::Tensor> layerNormParamGradients(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &gradsIn, const poplar::Tensor &mean, const poplar::Tensor &iStdDev, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute gradients w.r.t parameters for parameter update.

std::pair<poplar::Tensor, poplar::Tensor> layerNormParamGradients(poplar::Graph &graph, const poplar::Tensor &actsWhitened, const poplar::Tensor &gradsIn, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute gradients w.r.t parameters for parameter update.

poplar::Tensor layerNormGradients(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &gradsIn, const poplar::Tensor &mean, const poplar::Tensor &invStdDev, const poplar::Tensor &gamma, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute gradients w.r.t input activations for the layer norm layer.

Gradients are propagated through the complete layer including statistics computation.

poplar::Tensor layerNormGradients(poplar::Graph &graph, const poplar::Tensor &actsWhitened, const poplar::Tensor &gradsIn, const poplar::Tensor &invStdDev, const poplar::Tensor &gamma, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Compute gradients w.r.t input activations for the layer norm layer.

Gradients are propagated through the complete layer including statistics computation.

void layerNormParamUpdate(poplar::Graph &graph, const poplar::Tensor &gammaDelta, const poplar::Tensor &betaDelta, float scale, poplar::Tensor &gamma, poplar::Tensor &beta, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Update layer norm parameters given the gradients w.r.t. parameters.

void layerNormParamUpdate(poplar::Graph &graph, const poplar::Tensor &gammaDelta, const poplar::Tensor &betaDelta, const poplar::Tensor &scale, poplar::Tensor &gamma, poplar::Tensor &beta, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

4.6.7. popnn/Loss.hpp

namespace popnn

Functions used in neural networks.

Enums

enum LossType

Values:

enumerator SUM_SQUARED_LOSS
enumerator CROSS_ENTROPY_LOSS

Functions

poplar::program::Program calcLoss(poplar::Graph &graph, const poplar::Tensor &modelOutputs, const poplar::Tensor &expected, const poplar::Tensor &loss, const poplar::Tensor &deltas, const poplar::Tensor &deltasScale, const poplar::Tensor &modelOutputScaling, LossType lossType, const std::string &debugPrefix = "")

Calculate loss and gradient for a set of activations and expected labels.

Parameters
  • graph: Graph to add operations and tensors to.

  • modelOutputs: 2D tensor of model outputs per-batch to calculate loss for.

  • expected: One-hot encoded tensor (Labels per-batch) with the same number of rows as modelOutputs. Elements of the expected labels may be masked by using MASKED_LABEL_CODE. Such labels will not contribute to loss calculation.

  • loss: 1D Tensor to store the loss per-batch. Has the same number of rows as modelOutputs.

  • deltas: 2D Tensor to store deltas for each activation from the expected per-batch. Has the same dimensions as modelOutputs.

  • deltasScale: Optional Tensor to scale output deltas with when the lossType is CROSS_ENTROPY_LOSS. Scaling will be deltasScale / modelOutputScaling. If no tensor is specified a default will be created initialised with 1.0.

  • modelOutputScaling: Optional Tensor indicating the scaling of the modelOutputs when lossType is CROSS_ENTROPY_LOSS, normally from a softMax layer when the nonLinearity used is SOFTMAX_SCALED. If no tensor is specified a default will be created initialised with 1.0.

  • lossType: Method for calculating loss measurement.

  • debugPrefix: Optional debug prefix for operations and tensors for this operation.

poplar::program::Program calcLoss(poplar::Graph &graph, const poplar::Tensor &modelOutputs, const poplar::Tensor &expected, const poplar::Tensor &loss, const poplar::Tensor &deltas, LossType lossType, const std::string &debugPrefix = "")
poplar::program::Program calcLoss(poplar::Graph &graph, const poplar::Tensor &modelOutputs, const poplar::Tensor &expected, const poplar::Tensor &loss, const poplar::Tensor &deltas, const poplar::Tensor &deltasScale, const poplar::Tensor &modelOutputScaling, const poplar::Tensor &numCorrect, LossType lossType, const std::string &debugPrefix = "")

Calculate loss, gradient, and number of correct classifications per-batch for a set of activations and expected labels.

Elements of the expected labels may be masked by using MASKED_LABEL_CODE. Such labels will not contribute to the accuracy and loss calculation.

See

calcLoss, and calcAccuracy which this function is simply a combination of.

poplar::program::Program calcLoss(poplar::Graph &graph, const poplar::Tensor &modelOutputs, const poplar::Tensor &expected, const poplar::Tensor &loss, const poplar::Tensor &deltas, const poplar::Tensor &numCorrect, LossType lossType, const std::string &debugPrefix = "")
poplar::program::Program calcAccuracy(poplar::Graph &graph, const poplar::Tensor &modelOutputs, const poplar::Tensor &expected, const poplar::Tensor &numCorrect, const std::string &debugPrefix = "")

Calculate the number of correct classifications for a set of activations and expected labels.

Parameters
  • graph: Graph to add operations and tensors to.

  • modelOutputs: 2D tensor of model outputs per-batch to calculate loss for.

  • expected: Labels per-batch. Elements of the expected labels may be masked by using MASKED_LABEL_CODE. Such labels will not contribute to the accuracy calculation.

  • numCorrect: Tensor to store the number of correct classifications. Must be scalar, or single-element Tensor.

  • activationType: Device type used for activations.

  • expectedType: Device type used for expected labels.

  • debugPrefix: Optional debug prefix for operations and tensors for this operation.

poplar::Tensor argMax(poplar::Graph &graph, const poplar::Tensor &input, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Compute argmax for each of the outer dimensions of input tensor.

If input is a tensor of dim [y][x] then argmax is computed over x elements for each of the y outer dimension elements

Parameters
  • graph: Graph to add operations and tensors to.

  • input: 2D tensor of inputs

  • prog: Program to which the graph for this operation is added

  • debugPrefix: Optional debug prefix for operations and tensors for this operation.

poplar::Tensor argMin(poplar::Graph &graph, const poplar::Tensor &input, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Compute argmin for each of the outer dimensions of input tensor.

If input is a tensor of dim [y][x] then argmin is computed over x elements for each of the y outer dimension elements

Parameters
  • graph: Graph to add operations and tensors to.

  • input: 2D tensor of inputs

  • prog: Program to which the graph for this operation is added

  • debugPrefix: Optional debug prefix for operations and tensors for this operation.

poplar::Tensor topK(poplar::Graph &graph, const poplar::Tensor &input, poplar::Tensor &indices, unsigned K, bool sort, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Find the top K elements of |input|.

Takes a 2D tensor in the form of [batch][values] and will return a tensor in the shape of [batch][K] where K is the max values of each batch of values.

Parameters
  • graph: Graph to add operations and tensors to.

  • input: 2D tensor of inputs

  • indices: The tensor to store the indices in.

  • K: The number of values to return.

  • sort: If true values will be sorted in descending order.

  • prog: Program to which the graph for this operation is added

  • debugPrefix: Optional debug prefix for operations and tensors for this operation.

4.6.8. popnn/Lstm.hpp

namespace popnn

Functions used in neural networks.

namespace lstm

Functions

std::vector<std::pair<poplin::MatMulParams, poplar::OptionFlags>> getMatMulPrePlanParameters(LstmParams params, poplar::OptionFlags opts)

Predict what matrix multiplications will be needed for the given parameters and return list of corresponding matmul parameters and options.

uint64_t getBasicLstmCellFwdFlops(const LstmParams &params)
uint64_t getBasicLstmCellBwdFlops(const LstmParams &params)
uint64_t getBasicLstmCellWuFlops(const LstmParams &params)
poplar::Tensor createInput(poplar::Graph &graph, const LstmParams &params, const std::string &name, const poplar::OptionFlags &options = {}, poplin::matmul::PlanningCache *planningCache = nullptr)

Create an input tensor of shape {numSteps, batchSize, inputSize} which is optimally mapped to multiply the whole input sequence in a single matrix multiply operation.

LSTM options

  • availableMemoryProportion Decimal between 0 and 1 (inclusive)

    See poplin::createWeights().

  • inferenceOnly (true, false) [=false]

    Sets convolution pass to INFERENCE_FWD if true; TRAINING_FWD otherwise. See poplin::createWeights().

  • partialsType (half, float) [=float]

    See poplin::createWeights().

  • weightAccumulatorsType (half, float) [=data type of lstm]

    Data type of the weight acccumulators for the lstms weight matrices and biases

  • preCalcWeights (true, false) [=false]

    If true, use one big matrix multiply before the recurrent calculation to perform the part of the calculation that only depends on the input sequence.

  • recomputationMode (none, cellAndTanh, full) [=none]

    • none: No recomputation in the backwards pass.

    • cellAndTanh: Small amount of recomputation in the backwards pass, yielding some reduction in memory footprint for the layer.

    • full: Recompute everything from the forward pass. Saves the most memory at the cost of an extra forward pass of cycles.

Return

A tensor created in the graph of shape {timeSteps, batchSize, inputSize}.

Parameters
  • graph: Graph object.

  • params: The LSTM parameters.

  • name: String annotation.

  • options: Any implementation/debug options for the LSTM.

  • planningCache: A poplin matrix multiply planning cache.

poplar::Tensor createInitialOutput(poplar::Graph &graph, const LstmParams &params, const std::string &name, const poplar::OptionFlags &options = {}, poplin::matmul::PlanningCache *planningCache = nullptr)

Create the initial output that can be combined with the initial cell state using a LstmState.

This then can be fed into the LSTM call at the first timestep.

Return

A tensor which is the cell state for the forward operation of the LSTM cell.

Parameters
  • graph: Graph object.

  • params: The LSTM parameters.

  • name: String annotation.

  • options: Any implementation/debug options for the LSTM. See createInput().

  • planningCache: A poplin matrix multiply planning cache.

poplar::Tensor createInitialCellState(poplar::Graph &graph, const LstmParams &params, const std::string &name, const poplar::OptionFlags &options = {}, poplin::matmul::PlanningCache *planningCache = nullptr)

Create the initial cell state that can be combined with the initial output using a LstmState.

This then can be fed into the LSTM call at the first timestep.

Return

A tensor which is the cell state for the forward operation of the LSTM cell.

Parameters
  • graph: Graph object.

  • params: The LSTM parameters.

  • name: String annotation.

  • options: Any implementation/debug options for the LSTM. See createInput().

  • planningCache: A poplin matrix multiply planning cache.

LstmState createInitialState(poplar::Graph &graph, const LstmParams &params, const std::string &name, const poplar::OptionFlags &options = {}, poplin::matmul::PlanningCache *planningCache = nullptr)

Creates the initial state (both output and cellState) that is fed into the LSTM call at the first timestep.

It can be initialised by writing the appropriate member or using zeroInitialState().

Return

A tensor which is the state for the forward operation of the LSTM cell.

Parameters
  • graph: Graph object.

  • params: The LSTM parameters.

  • name: String annotation.

  • options: Any implementation/debug options for the LSTM. See createInput().

  • planningCache: A poplin matrix multiply planning cache.

void zeroInitialState(poplar::Graph &graph, const LstmState &initialState, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Initialize the forward state of an LSTM with zeros.

Parameters
  • graph: Graph object.

  • initialState: The initial state to zero.

  • prog: The program to extend with the initialization code

  • debugPrefix: A debug string to prepend to debug indentifiers in the added code.

std::pair<poplar::Tensor, poplar::Tensor> createWeightsKernel(poplar::Graph &graph, const LstmParams &params, const std::string &name, const poplar::OptionFlags &options = {}, poplin::matmul::PlanningCache *planningCache = nullptr)

Create the weights kernel used to weight the input of an LSTM.

Returns the inputWeights and outputWeights.

poplar::Tensor createWeightsBiases(poplar::Graph &graph, const LstmParams &params, const std::string &name, const poplar::OptionFlags &options = {}, poplin::matmul::PlanningCache *planningCache = nullptr)

Create the weights biases.

LstmWeights createWeights(poplar::Graph &graph, const LstmParams &params, const std::string &name, const poplar::OptionFlags &options = {}, poplin::matmul::PlanningCache *planningCache = nullptr)

Create the weights (both kernel and biases) used to weight the input of an LSTM.

std::pair<poplar::Tensor, poplar::Tensor> lstmFwd(poplar::Graph &graph, const LstmParams &params, const LstmState &stateInit, const poplar::Tensor &in, const LstmWeights &weights, poplar::Tensor *intermediates, poplar::program::Sequence &fwdProg, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, poplin::matmul::PlanningCache *planningCache = nullptr)

Calculate the result of applying an LSTM across a sequence.

The LSTM is run for seqSize steps each with a batch of size batchSize and input size inputSize and output size outputSize. The total number of units within each LSTM cell is lstmUnits = BASIC_LSTM_CELL_NUM_UNITS.

Return

The output of the LSTM and the final cell state.

Depending on the outputFullSequence parameter the output tensor is either the output of the last timestep in the shape [batch, outputSize] or it is the sequence of outputs for every timestep in the shape [timesteps, batch, outputSize].

Parameters
  • graph: Graph to which the LSTM cell belongs.

  • params: The parameters of the LSTM.

  • stateInit: Initial state for the LSTM.

  • in: The input tensor to the LSTM of dimension [timesteps, batch, inputSize].

  • weights: The LSTM weights structure.

  • [out] intermediates: Intermediate results that are retained in the the forward pass of training for use in the backward pass. This argument should be set to null if we are only doing inference.

  • weights: The LSTM weights structure.

  • fwdProg: Program sequence.

  • debugPrefix: String used as prefix for compute sets.

  • options: LSTM implementation options. See createInput().

  • planningCache: The matmul planning cache.

LstmState lstmBwd(poplar::Graph &graph, const LstmParams &params, poplar::program::Sequence &prog, const LstmState &fwdStateInit, const poplar::Tensor &fwdIntermediates, const LstmWeights &weights, const poplar::Tensor &input, const poplar::Tensor &output, const poplar::Tensor &outputGrad, const poplar::Tensor *lastCellStateGrad, poplar::Tensor *inputGrad, poplar::Tensor *bwdIntermediates, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, poplin::matmul::PlanningCache *planningCache = nullptr)

Run LSTM backward pass.

The backward pass executes in reverse order as compared to the forward pass. If the forward steps for a LSTM layer are sf = {0, 1, 2, …, S - 1} then the backward steps run for sb = {S - 1, S - 2, …. , 1, 0}.

Return

The gradient of the initial state.

Parameters
  • graph: Graph to which the LSTM cell belongs.

  • params: The parameters of the LSTM.

  • prog: Program sequence.

  • fwdStateInit: Forward state tensor for initial step.

  • fwdIntermediates: Intermediates results from the forward pass.

  • weights: The LSTM weights structure.

  • input: The input tensor to the LSTM of shape: [timesteps, batch, inputSize].

  • output: The output tensor from the forward pass. Depending on the outputFullSequence parameter this is either the output for the last timestep or it is a sequence of outputs for each timestep.

  • outputGrad: The gradients of the output. Depending on the outputFullSequence parameter this is either the gradient of the output for the last timestep or it is a sequence output gradients for each timestep.

  • lastCellStateGrad: The gradient of the last cell state - may be null if there is no incoming gradient.

  • [out] *inputSeqGrad: The gradients of the inputs - may be null if this information is not required.

  • [out] *bwdIntermediates: Intermediates gradients that are retained in the backward pass of training for use in the weight update. This argument should be set to null if you do not need to calculate weight deltas.

  • debugPrefix: String used as prefix for compute sets.

  • options: LSTM implementation options. See createInput().

  • planningCache: The matmul planning cache.

LstmWeights lstmWU(poplar::Graph &graph, const LstmParams &params, poplar::program::Sequence &prog, const LstmState &fwdStateInit, const poplar::Tensor &fwdIntermediates, const poplar::Tensor &bwdIntermediates, const LstmWeights &weights, const poplar::Tensor &input, const poplar::Tensor &output, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, poplin::matmul::PlanningCache *planningCache = nullptr)

Run a standalone weight update pass.

Takes intermediates and gradients from the backward pass and calculates and returns weight deltas.

Return

A set of weight gradients to sum with weights.

Parameters
  • graph: Graph to which the LSTM cell belongs.

  • params: The parameters of the LSTM.

  • prog: Program sequence to add operations to.

  • fwdStateInit: Forward state tensor for initial step.

  • fwdIntermediates: Intermediate results from the forward pass.

  • bwdIntermediates: Intermediate results from the backward pass.

  • weights: The LSTM weights structure.

  • input: The input tensor to the LSTM of shape: [timesteps, batch, inputSize].

  • output: The output tensor from the forward pass. Depending on the outputFullSequence parameter this is either the output for the last timestep or it is a sequence of outputs for each timestep.

  • debugPrefix: String used as a prefix to compute sets and tensors added to the graph.

  • options: LSTM implementation options. See createInput().

  • planningCache: The matmul planning cache.

LstmState lstmBwdWithWU(poplar::Graph &graph, const LstmParams &params, poplar::program::Sequence &prog, const LstmState &fwdStateInit, const poplar::Tensor &fwdIntermediates, const LstmWeights &weights, const poplar::Tensor &input, const poplar::Tensor &output, const poplar::Tensor &outputGrad, const poplar::Tensor *lastCellStateGrad, poplar::Tensor *inputGrad, LstmWeights &weightsGrad, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {}, poplin::matmul::PlanningCache *planningCache = nullptr)

Run a combined LSTM backward and weight update pass.

Use this combined backward and weight update pass in preference to lstmBwd and lstmWU separately in order to allow the most efficient implementation to be chosen if you do not need to split the operation.

Return

The gradient of the initial state.

Parameters
  • graph: Graph to which the LSTM cell belongs.

  • params: The parameters of the LSTM.

  • prog: Program sequence.

  • fwdStateInit: Forward state tensor for initial step.

  • fwdIntermediates: Intermediates results from the forward pass.

  • weights: The LSTM weights structure.

  • input: The input tensor to the LSTM of shape: [timesteps, batch, inputSize].

  • output: The output tensor from the forward pass. Depending on the outputFullSequence parameter this is either the output for the last timestep or it is a sequence of outputs for each timestep.

  • outputGrad: The gradients of the output. Depending on the outputFullSequence parameter this is either the gradient of the output for the last timestep or it is a sequence output gradients for each timestep.

  • lastCellStateGrad: The gradient of the last cell state - may be null if there is no incoming gradient.

  • [out] *inputSeqGrad: The gradients of the inputs. May be null if this information is not required.

  • weightsGrad: A set of weight deltas to sum with weights.

  • debugPrefix: String used as prefix for compute sets

  • options: LSTM implementation options. See createInput().

  • planningCache: The matmul planning cache.

struct LstmParams
#include <Lstm.hpp>

Structure representing the parameters of the LSTM.

Public Functions

LstmParams() = default
LstmParams(poplar::Type dataType, std::size_t batchSize, std::size_t timeSteps, std::vector<std::size_t> layerSizes)

Public Members

poplar::Type dataType

The datatype of the LSTM.

std::size_t batchSize

The batch size.

std::size_t timeSteps

The number of time steps in the sequence of the LSTM.

std::vector<std::size_t> layerSizes

The number of neurons before and after each layer of the LSTM.

If the LSTM consists of N layers, then this should be a vector of size N+1. The first element is the input size and each subsequent element is the output size of the LSTM layer.

bool outputFullSequence = true

If true the Lstm function returns the entire sequence of outputs, otherwise it returns just the final output.

bool doInputWeightCalc = true

If this parameter is set to false then the LSTM will skip the calculation of weighted inputs (only useful for benchmarking).

bool calcInputGradients = true

If this parameter is set to false then the LSTM will skip the calculation of the gradients of the inputs.

struct LstmState
#include <Lstm.hpp>

Structure holding the state of a LSTM cell, or the gradients for the state (depending on the context).

Public Functions

poplar::Tensor getAsTensor() const

Public Members

poplar::Tensor output
poplar::Tensor cellState
struct LstmWeights
#include <Lstm.hpp>

Structure holding all the parameters of an LSTM cell, or the deltas for those parameters (depending on the context).

Public Members

poplar::Tensor inputWeights
poplar::Tensor outputWeights
poplar::Tensor biases

4.6.9. popnn/LstmDef.hpp

Enums

enum BasicLstmCellUnit

The units within a basic LSTM cell.

The term unit is used to refer to either a gate, or a cell state vector computation. In general all of these require a weight matrix, a bias and a non-linearity. Typically, a fixed type of non-linearity is associated with each type of unit.

Values:

enumerator BASIC_LSTM_CELL_FORGET_GATE
enumerator BASIC_LSTM_CELL_INPUT_GATE
enumerator BASIC_LSTM_CELL_CANDIDATE
enumerator BASIC_LSTM_CELL_OUTPUT_GATE
enumerator BASIC_LSTM_CELL_NUM_UNITS

4.6.10. popnn/NonLinearity.hpp

Defines

DEF_NONLINEARITY_INPLACE(fn, nlType)
DEF_NONLINEARITY_(fn, nlType)
DEF_NONLINEARITY(fn, nlType)
namespace popnn

Functions used in neural networks.

Functions

void nonLinearityInPlace(poplar::Graph &graph, NonLinearityType nonLinearityType, poplar::Tensor t, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Update tensor t by applying the given non-linearity in-place.

Parameters
  • graph: The graph to add the operation to.

  • nonLinearityType: The type of non-linearity to apply to t.

  • t: The tensor to apply the non-linearity to.

  • prog: The sequence to add the operation to.

  • debugPrefix: Optional string to use as a prefix to debug information.

void nonLinearityInPlace(poplar::Graph &graph, NonLinearityType nonLinearityType, poplar::Tensor t, poplar::ComputeSet &cs, const std::string &debugPrefix = "")

Update tensor t by applying the given non-linearity in-place.

Parameters
  • graph: The graph to add the operation to.

  • nonLinearityType: The type of non-linearity to apply to t.

  • t: The tensor to apply the non-linearity to.

  • cs: The compute set to add vertices to.

  • debugPrefix: Optional string to use as a prefix to debug information.

void nonLinearityInPlace(poplar::Graph &graph, NonLinearityType nonLinearityType, poplar::Tensor t, float &nonLinearityScaling, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Update tensor t by applying the given non-linearity in-place and return the scaling factor by which outputs from this operation are multiplied in nonLinearityScaling.

For NonLinearityType other than SOFTMAX_SCALED nonLinearityScaling will be 1.0f upon return.

Parameters
  • graph: The graph to add the operation to.

  • nonLinearityType: The type of non-linearity to apply to t.

  • t: The tensor to apply the non-linearity to.

  • nonLinearityScaling: Reference to a float which will be overwritten with the scaling factor by which outputs from this operation in t are multiplied.

  • prog: The sequence to add the operation to.

  • debugPrefix: Optional string to use as a prefix to debug information.

void nonLinearityInPlace(poplar::Graph &graph, NonLinearityType nonLinearityType, poplar::Tensor t, float &nonLinearityScaling, poplar::ComputeSet &cs, const std::string &debugPrefix = "")

Update tensor t by applying the given non-linearity in-place and return the scaling factor by which outputs from this operation are multiplied in nonLinearityScaling.

For NonLinearityType other than SOFTMAX_SCALED nonLinearityScaling will be 1.0f upon return.

Parameters
  • graph: The graph to add the operation to.

  • nonLinearityType: The type of non-linearity to apply to t.

  • t: The tensor to apply the non-linearity to.

  • nonLinearityScaling: Reference to a float which will be overwritten with the scaling factor by which outputs from this operation in t are multiplied.

  • cs: The compute set to add vertices to.

  • debugPrefix: Optional string to use as a prefix to debug information.

poplar::Tensor nonLinearity(poplar::Graph &graph, NonLinearityType nonLinearityType, poplar::Tensor t, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Apply the given non-linearity to tensor t and return the result.

Return

A new tensor containing the contents of t with the given non-linearity applied.

Parameters
  • graph: The graph to add the operation to.

  • nonLinearityType: The type of non-linearity to apply.

  • t: The tensor to apply the non-linearity to.

  • prog: The sequence to add the operation to.

  • debugPrefix: Optional string to use as a prefix to debug information.

poplar::Tensor nonLinearity(poplar::Graph &graph, NonLinearityType nonLinearityType, poplar::Tensor t, float &nonLinearityScaling, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Apply the given non-linearity to tensor t and return the result.

Also returns the scaling factor by which outputs from this operation are multiplied in nonLinearityScaling.

For NonLinearityType other than SOFTMAX_SCALED nonLinearityScaling will be 1.0f upon return.

Return

A new tensor containing the contents of t with the given non-linearity applied.

Parameters
  • graph: The graph to add the operation to.

  • nonLinearityType: The type of non-linearity to apply to t.

  • t: The tensor to apply the non-linearity to.

  • nonLinearityScaling: Reference to a float which will be overwritten with the scaling factor by which outputs from this operation in t are multiplied.

  • prog: The sequence to add the operation to.

  • debugPrefix: Optional string to use as a prefix to debug information.

void sigmoidInPlace(poplar::Graph &graph, poplar::Tensor t, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
void sigmoidInPlace(poplar::Graph &graph, poplar::Tensor t, float &nonLinearityScaling, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
poplar::Tensor sigmoid(poplar::Graph &graph, poplar::Tensor t, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
poplar::Tensor sigmoid(poplar::Graph &graph, poplar::Tensor t, float &nonLinearityScaling, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
void reluInPlace(poplar::Graph &graph, poplar::Tensor t, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
void reluInPlace(poplar::Graph &graph, poplar::Tensor t, float &nonLinearityScaling, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
poplar::Tensor relu(poplar::Graph &graph, poplar::Tensor t, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
poplar::Tensor relu(poplar::Graph &graph, poplar::Tensor t, float &nonLinearityScaling, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
void tanhInPlace(poplar::Graph &graph, poplar::Tensor t, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
void tanhInPlace(poplar::Graph &graph, poplar::Tensor t, float &nonLinearityScaling, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
poplar::Tensor tanh(poplar::Graph &graph, poplar::Tensor t, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
poplar::Tensor tanh(poplar::Graph &graph, poplar::Tensor t, float &nonLinearityScaling, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
void geluInPlace(poplar::Graph &graph, poplar::Tensor t, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
void geluInPlace(poplar::Graph &graph, poplar::Tensor t, float &nonLinearityScaling, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
poplar::Tensor gelu(poplar::Graph &graph, poplar::Tensor t, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
poplar::Tensor gelu(poplar::Graph &graph, poplar::Tensor t, float &nonLinearityScaling, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
void softmaxInPlace(poplar::Graph &graph, poplar::Tensor t, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
void softmaxInPlace(poplar::Graph &graph, poplar::Tensor t, float &nonLinearityScaling, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
poplar::Tensor softmax(poplar::Graph &graph, poplar::Tensor t, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
poplar::Tensor softmax(poplar::Graph &graph, poplar::Tensor t, float &nonLinearityScaling, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
void softmaxStableInPlace(poplar::Graph &graph, poplar::Tensor t, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
void softmaxStableInPlace(poplar::Graph &graph, poplar::Tensor t, float &nonLinearityScaling, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
poplar::Tensor softmaxStable(poplar::Graph &graph, poplar::Tensor t, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
poplar::Tensor softmaxStable(poplar::Graph &graph, poplar::Tensor t, float &nonLinearityScaling, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
void scaledSoftmaxStableInPlace(poplar::Graph &graph, poplar::Tensor t, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
void scaledSoftmaxStableInPlace(poplar::Graph &graph, poplar::Tensor t, float &nonLinearityScaling, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
poplar::Tensor scaledSoftmaxStable(poplar::Graph &graph, poplar::Tensor t, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
poplar::Tensor scaledSoftmaxStable(poplar::Graph &graph, poplar::Tensor t, float &nonLinearityScaling, poplar::program::Sequence &prog, const std::string &debugPrefix = "")
poplar::Tensor nonLinearityInputGradient(poplar::Graph &graph, NonLinearityType nonLinearityType, poplar::Tensor act, poplar::Tensor outGradient, poplar::ComputeSet &cs, const std::string &debugPrefix = "")

Computes and returns the input gradient for a non-linearity from the activations and gradients at the output of the non-linearity.

Return

A new tensor with the calculated gradient for the input of the non-linearity.

Parameters
  • graph: The graph to add the operation to.

  • nonLinearityType: The type of non-linearity to compute the input gradient for.

  • act: The output activations from the non-linearity. For the GELU non-linearity only this is the input to the non-linearity.

  • outGradient: The gradients at the output of the non-linearity.

  • cs: The compute set to add vertices to.

  • debugPrefix: Optional string to use as a prefix to debug information.

poplar::Tensor nonLinearityInputGradient(poplar::Graph &graph, NonLinearityType nonLinearityType, poplar::Tensor act, poplar::Tensor outGradient, poplar::program::Sequence &prog, const std::string &debugPrefix = "")

Computes and returns the input gradient for a non-linearity from the activations and gradients at the output of the non-linearity.

Return

A new tensor with the calculated gradient for the input of the non-linearity.

Parameters
  • graph: The graph to add the operation to.

  • nonLinearityType: The type of non-linearity to compute the input gradient for.

  • act: The output activations from the non-linearity. For the GELU non-linearity only this is the input to the non-linearity.

  • outGradient: The gradients at the output of the non-linearity.

  • prog: The sequence to add the operation to.

  • debugPrefix: Optional string to use as a prefix to debug information.

4.6.11. popnn/NonLinearityDef.hpp

namespace popnn

Functions used in neural networks.

Enums

enum NonLinearityType

Values:

enumerator SIGMOID

Sigmoid:

  • y = 1 / (1 + e^(-x))

enumerator RELU

Rectified Linear Unit:

  • x >= 0 -> y = x

  • x < 0 -> y = 0

enumerator TANH

Hyperbolic tangent:

  • y = tanh(x)

enumerator GELU

Gaussian Error Linear Unit:

  • y = x * Phi(x) where Phi(x) is the cumulative distribution function of normal gaussian distribution. Phi(x) is approximated as:

  • Phi(x) = 0.5 * (1 + (tanh(x * 0.7978845608 * (1 + 0.044715 * x * x))))

enumerator SOFTMAX

Softmax:

  • Always applied over the innermost dimension of the given tensor. Outer dimensions are independent of one another.

enumerator SOFTMAX_STABLE

Same as SOFTMAX, but slower more numerically stable algorithm used.

enumerator SOFTMAX_SCALED

Same as SOFTMAX, but slower more numerically stable algorithm used.

Outputs are scaled to allow use of greater dynamic range in outputs.

4.6.12. popnn/NonLinearityDefUtil.hpp

template<>
struct poputil::VertexTemplateToString<popnn::NonLinearityType>
#include <NonLinearityDefUtil.hpp>

Specialise vertex template stringification for non-linearity type.

Public Static Functions

std::string to_string(const popnn::NonLinearityType &nlType)
namespace popnn

Functions used in neural networks.

Functions

const char *asString(const popnn::NonLinearityType &type)
std::ostream &operator<<(std::ostream &os, const popnn::NonLinearityType &type)
std::istream &operator>>(std::istream &in, popnn::NonLinearityType &type)
namespace poputil
template<> NonLinearityType >
#include <NonLinearityDefUtil.hpp>

Specialise vertex template stringification for non-linearity type.

Public Static Functions

std::string to_string(const popnn::NonLinearityType &nlType)

4.6.13. popnn/Norms.hpp

namespace popnn

Functions used in neural networks.

Functions

std::uint64_t getNormFwdFlops(std::size_t statisticsSize, std::size_t numActsElements, bool computeStats = true)

Flops for forward pass of a norm layer with a given size of statistics vector and the total elements in the activations input to the layer.

For Batch Norm,

computeStats should be set to false for inference if batch statistics are not computed as averaged batch statistics may be combined with norm parameters.

std::uint64_t getNormBwdFlops(std::size_t statisticsSize, std::size_t numActsElements)

Flops for computation of gradient w.r.t activations for a norm layer with a given size of statistics vector and the total elements in the activations input to the layer.

std::uint64_t getNormWuFlops(std::size_t paramsSize, std::size_t numActsElements)
poplar::Tensor createNormGamma(poplar::Graph &graph, const poplar::Tensor &acts)
poplar::Tensor createNormBeta(poplar::Graph &graph, const poplar::Tensor &acts)
std::pair<poplar::Tensor, poplar::Tensor> createNormParams(poplar::Graph &graph, const poplar::Tensor acts)

4.6.14. popnn/Pooling.hpp

namespace popnn

Functions used in neural networks.

namespace pooling

Functions

std::ostream &operator<<(std::ostream &o, const PoolParams &params)
const char *asString(const PoolingType &method)
std::vector<std::size_t> getOutputFieldShape(const PoolParams &params)
uint64_t getFwdFlops(const PoolParams &params)
uint64_t getBwdFlops(const PoolParams &params)
double getFwdPerfectCycleCount(const poplar::Graph &graph, const PoolParams &params)
double getBwdPerfectCycleCount(const poplar::Graph &graph, const PoolParams &params)
poplar::Tensor pool(poplar::Graph &graph, const PoolParams &params, const poplar::Tensor &in, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

Add a pooling operation to the graph.

This performs a pooling over the spatial dimensions […]. The shape of the input should be [B x inChans x …].

Return

A tensor with the results of the pooling operation

Parameters
  • graph: The operation will be added to this graph

  • params: Pooling parameters

  • in: Input tensor

  • prog: Program sequence to append the operation to

  • debugPrefix: Debug name for the operation

  • options: Pooling options (not currently used)

poplar::Tensor poolInputGradient(poplar::Graph &graph, const PoolParams &params, const poplar::Tensor &in, const poplar::Tensor &pooled, const poplar::Tensor &pooledGradient, bool useScaledGradient, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

For MAX, AVG or SUM pooling.

Note - recommend the specific function for AVG or SUM pooling, below. Calculate the gradient w.r.t. to the input of a pooling operation given the gradient of the output.

This performs a pooling over the spatial dimensions […]. The shape of the input should be [B x inChans x …].

Return

A tensor with the results of the pooling operation

Parameters
  • graph: The operation will be added to this graph

  • params: Pooling parameters

  • in: Forward activations tensor input to pooling

  • pooled: Output of pooling in the forward pass

  • pooledGradient: Gradients to the pooling operation

  • useScaledGradient: Use scaled gradient if set to true. Otherwise, the gradient is propagated to all the positions which matched pooled value in forward pass.

  • prog: Program sequence to append the operation to

  • debugPrefix: Debug name for the operation

  • options: Pooling options. See pool().

poplar::Tensor poolInputGradient(poplar::Graph &graph, const PoolParams &params, const unsigned fwdChansPerGroup, const poplar::Tensor &pooledGradient, poplar::program::Sequence &prog, const std::string &debugPrefix = "", const poplar::OptionFlags &options = {})

For AVG and SUM pooling Calculate the gradient w.r.t.

to the input of a pooling operation given the gradient of the output.

This performs a pooling over the spatial dimensions […]. The shape of the output will be [B x inChans x …].

Return

A tensor with the results of the pooling operation

Parameters
  • graph: The operation will be added to this graph

  • params: Pooling parameters

  • fwdChansPerGroup: Used in creating the output tensor

  • pooledGradient: Gradients to the pooling operation

  • prog: Program sequence to append the operation to

  • debugPrefix: Debug name for the operation

  • options: Pooling options. See pool().

struct PoolParams

Public Functions

PoolParams(PoolingType poolingType, std::vector<std::size_t> inputFieldShape, std::vector<std::size_t> kernelShape, std::vector<unsigned> stride, std::vector<int> inputTruncationOrPaddingLower, std::vector<int> inputTruncationOrPaddingUpper, std::size_t numChannels, std::size_t batchSize, poplar::Type dType)
std::size_t getNumFieldDims() const
std::vector<std::size_t> getOutputFieldShape() const

Public Members

PoolingType poolingType
std::vector<std::size_t> inputFieldShape
std::vector<std::size_t> kernelShape
std::vector<unsigned> stride
std::vector<int> inputTruncationOrPaddingLower
std::vector<int> inputTruncationOrPaddingUpper
std::size_t numChannels
std::size_t batchSize
poplar::Type dType

4.6.15. popnn/PoolingDef.hpp

namespace popnn

Functions used in neural networks.

Enums

enum PoolingType

Pooling types.

Values:

enumerator MAX
enumerator AVG
enumerator SUM

4.6.16. popnn/Recurrent.hpp

namespace poplin

Linear algebra functions.

A collection of utility functions to assist calculation of input/output ranges when moving a 2-dimensional kernel over a larger 2-dimensional space (for example in convolution or pooling layers)

namespace matmul
namespace popnn

Functions used in neural networks.

namespace rnn

Functions

std::vector<std::pair<poplin::MatMulParams, poplar::OptionFlags>> getMatMulPrePlanParameters(std::size_t numSteps, std::size_t batchSize, std::size_t inputSize, std::size_t outputSize, const poplar::Type &dType, const poplar::Type &partialsType = poplar::FLOAT, bool inferenceOnly = false, bool hasFeedforwardWeights = true)

Predict what matrix multiplications will be needed for the given parameters and return list of corresponding matmul parameters and options.

uint64_t getFwdFlops(unsigned sequenceSize, unsigned batchSize, unsigned inputSize, unsigned outputSize, bool weightInput = true)

Compute the total flops for the forward pass of RNN.

uint64_t getBwdFlops(unsigned sequenceSize, unsigned batchSize, unsigned inputSize, unsigned outputSize, bool calcInputGrad = true)

Compute the total flops for the backward pass of RNN.

uint64_t getWuFlops(unsigned sequenceSize, unsigned batchSize, unsigned inputSize, unsigned outputSize)

Compute the total flops for the weight update pass of RNN.

poplar::Tensor createInput(poplar::Graph &graph, unsigned numSteps, unsigned batchSize, unsigned inputSize, unsigned outputSize, const poplar::Type &dType, const poplar::Type &partialsType = poplar::FLOAT, bool inferenceOnly = false, const std::string &name = "", poplin::matmul::PlanningCache *planningCache = nullptr)

Create a tensor which is input to a vanilla RNN.

The layout of the tensor is best for a multiplication of the input weight matrix with the given number of steps.

Return

Tensor of shape {numSteps, batchSize, inputSize}

Parameters
  • graph: Graph object

  • numSteps: Number of steps used in the forward weighting of input

  • batchSize: Number of batch elements

  • inputSize: Size of the input for each sequence step

  • outputSize: Output(hidden) size of each sequence element

  • inferenceOnly: Whether the RNN layer is for inference only. If true, we can ignore backwards and weight update passes

  • dType: Data type of the created tensor

  • partialsType: Data type of intermediate calculations

  • name: Name of the tensor

  • planningCache: The matmul planning cache.

poplar::Tensor createFwdState(poplar::Graph &graph, const poplar::Type &dType, unsigned batchSize, unsigned outputSize, poplar::program::Sequence &prog, bool initState, bool inferenceOnly, const std::string &debugPrefix = "", poplin::matmul::PlanningCache *planningCache = nullptr)

Create initial state for a vanilla RNN.

The state apart from the activations are initialised by the control program

The amount of hidden state may depend on whether the RNN is used for inference or training.

Return

A 2D tensor of shape {batchSize, outputSize}

Parameters
  • graph: Graph object

  • dType: data type of the created tensor

  • batchSize: Number of batch elements

  • outputSize: Output(hidden) of each sequence element

  • prog: Control program

  • initState: Initialise the state

  • inferenceOnly: Whether the RNN layer is for inference only. If true, we can ignore backwards and weight update passes

  • debugPrefix: String annotation

  • planningCache: The matmul planning cache.

poplar::Tensor getOutputFromFwdState(const poplar::Tensor &fwdState)

Extract prev output tensor from hidden state.

The returned tensor is a view of tensor and can be used to initialise the tensor if required

poplar::Tensor createWeightsInput(poplar::Graph &graph, unsigned sequenceSize, unsigned batchSize, unsigned inputSize, unsigned outputSize, const poplar::Type &dType, const poplar::Type &partialsType = poplar::FLOAT, bool inferenceOnly = false, const std::string &namePrefix = "", poplin::matmul::PlanningCache *planningCache = nullptr)

Create the weights used to weight the input of a vanilla RNN layer.

The tile mapping of the weight tensor is best for multiplication with a sequence size in the input activation tensor used to multiply with the input weights.

Parameters
  • graph: Graph object

  • sequenceSize: Number of sequence steps used in the forward weighting of the input. The best tile mapping is when this matches the sequence size of the input activation tensor

  • batchSize: Number of batch elements

  • inputSize: Input size of each sequence

  • outputSize: Output(hidden) size of each sequence

  • dType: Data type of the created tensor

  • partialsType: Data type of partial results in the computation

  • inferenceOnly: Whether the RNN layer is for inference only. If true, we can ignore backwards and weight update passes

  • namePrefix: A string description of the weights tensor

  • planningCache: The matmul planning cache.

poplar::Tensor createWeightsFeedback(poplar::Graph &graph, unsigned batchSize, unsigned outputSize, const poplar::Type &dType, const poplar::Type &partialsType = poplar::FLOAT, bool inferenceOnly = false, const std::string &namePrefix = "", poplin::matmul::PlanningCache *planningCache = nullptr)

Create the weights used in the recurrent part of a vanilla RNN layer.

Parameters
  • graph: Graph object

  • batchSize: Number of batch elements

  • outputSize: Output(hidden) size of each sequence

  • dType: Data type of the created tensor

  • partialsType: Data type of partial results in the computation

  • inferenceOnly: Whether the RNN layer is for inference only. If true, we can ignore backwards and weight update passes

  • namePrefix: A string description of the created tensor

  • planningCache: The matmul planning cache.

poplar::Tensor forwardWeightInput(poplar::Graph &graph, const poplar::Tensor &actIn, const poplar::Tensor &weights, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, bool inferenceOnly = false, const std::string &debugPrefix = "", poplin::matmul::PlanningCache *planningCache = nullptr)

Perform feedforward part of a RNN layer.

The feedforward part of the RNN layer must be followed by the feedback part to complete the RNN layer. i.e. the output must be fed as the feedforward input to the feedback part.

The following definitions are used below: numSteps is the number of sequence steps batchSize is the batchSize inputSize is the size of the input for each step outputSize is the size of the output for each step

See

forwardIterate

Return

Output tensor with shape {numSteps, batchSize, outputSize}

Parameters
  • graph: Graph pbject

  • actIn: Input activation tensor with shape {numSteps, batchSize, inputSize}

  • weights: Feedforward weights with shape {outputSize, inputSize}

  • prog: Program sequence to which programs added by this function are appended to

  • partialsType: Data type for intermediates

  • inferenceOnly: Whether the RNN layer is for inference only. If true, we can ignore backwards and weight update passes

  • debugPrefix: Debug prefix string

  • planningCache: The matmul planning cache.

poplar::Tensor forwardIterate(poplar::Graph &graph, const poplar::Tensor &feedFwdIn, const poplar::Tensor &initState, const poplar::Tensor &feedbackWeights, const poplar::Tensor &biases, poplar::program::Sequence &prog, popnn::NonLinearityType nonLinearityType, const poplar::Type &partialsType = poplar::FLOAT, bool inferenceOnly = false, const std::string &debugPrefix = "", poplin::matmul::PlanningCache *planningCache = nullptr)

Perform the feedback part of the RNN layer.

The feedback part of the RNN layer must be preceded by the feedforward part of the RNN layer to complete the layer

The following definitions are used below: numSteps is the number of steps batchSize is the batchSize inputSize is the size of the input for each step outputSize is the size of the output for each step

See

forwardWeightInput

Return

Output activations of RNN layer

Parameters
  • graph: Graph object

  • feedFwdIn: Input to this function (output from feedforward part of the RNN layer

  • initState: The initial state of the RNN layer(i.e. the previous output)

  • feedbackWeights: Feedback weights

  • biases: Biases

  • prog: Program sequence to which programs added by this function are appended to

  • nonLinearityType: Non linearity used for the output activations

  • partialsType: Data type for intermediates

  • inferenceOnly: Whether the RNN layer is for inference only. If true, we can ignore backwards and weight update passes

  • debugPrefix: Debug prefix string

  • planningCache: The matmul planning cache.

poplar::Tensor createBwdState(poplar::Graph &graph, const poplar::Type &dType, unsigned batchSize, unsigned outputSize, poplar::program::Sequence &prog, const std::string &debugPrefix = "", poplin::matmul::PlanningCache *planningCache = nullptr)

Create initial state for backward pass of a vanilla RNN.

Return

Tile mapped initial state tensor

Parameters
  • graph: Graph object

  • dType: Data type of the created tensor

  • batchSize: Number of batch elements processed

  • outputSize: Number of output activations

  • prog: Control program

  • debugPrefix: String annotation

  • planningCache: The matmul planning cache.

std::pair<poplar::Tensor, poplar::Tensor> backwardGradientStep(poplar::Graph &graph, const poplar::Tensor &nextLayerGrad, const poplar::Tensor &bwdState, const poplar::Tensor &actOut, const poplar::Tensor &weightsInput, const poplar::Tensor &weightsFeedback, poplar::program::Sequence &prog, popnn::NonLinearityType nonLinearityType, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", poplin::matmul::PlanningCache *planningCache = nullptr)

Compute a single step of backward pass of a vanilla RNN layer.

Two gradient outputs are produced. The first is at the input of the RNN layer for the step. The second is at the adder and can be used to backward propagate through the earlier steps.

Return

A pair of tensors. The first is the loss gradient at the input layer. The second is the backward state needed to run the next backward step

Parameters
  • graph: Graph object

  • nextLayerGrad: Loss gradient fed as input to this step

  • bwdState: Gradient state for previous step

  • actOut: Output activation

  • weightsInput: Input weights

  • weightsFeedback: Feedback weights

  • prog: Control program to which to add programs to

  • nonLinearityType: Type of non-linearity

  • firstStep: Set to true to indicate if first step in the backward pass

  • partialsType: Data type used in intermediate calculations

  • debugPrefix: A string annotation

  • planningCache: The matmul planning cache.

poplar::Tensor backwardGradientStep(poplar::Graph &graph, const poplar::Tensor &nextLayerGrad, const poplar::Tensor &bwdState, const poplar::Tensor &actOut, const poplar::Tensor &weightsFeedback, poplar::program::Sequence &prog, popnn::NonLinearityType nonLinearityType, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", poplin::matmul::PlanningCache *planningCache = nullptr)

Same as function above with the difference that the input gradients are not computed.

void paramDeltaUpdate(poplar::Graph &graph, const poplar::Tensor &bwdState, const poplar::Tensor &actIn, const poplar::Tensor &prevOut, poplar::Tensor &weightsInputDeltasAcc, poplar::Tensor &weightsFeedbackDeltasAcc, poplar::Tensor &biasDeltasAcc, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const std::string &debugPrefix = "", poplin::matmul::PlanningCache *planningCache = nullptr)

Update parameter deltas for a vanilla RNN step.

The parameter deltas updated are:

  • Feedback Weights

  • Input Weights

  • Bias The new deltas computed for this step are added to the accumulated deltas from previous steps. The caller must zero the accumulated tensors at the first call if the tensors to maintain the result are in-place.

Parameters
  • graph: Graph object.

  • bwdState: Gradient state for this step.

  • actIn: Input activations for this step.

  • prevOut: Previous RNN output activations for this step.

  • weightsInputDeltasAcc: Previous weights input deltas tensor. This tensor must be tile-mapped. The deltas from this step are added to this tensor.

  • weightsFeedbackDeltasAcc: Previous feedback weights deltas tensor. This tensor must be tile-mapped. The deltas from this step are added to this tensor.

  • biasDeltasAcc: Previous bias deltas tensor. This tensor must be tile-mapped. The deltas from this step are added to this tensor.

  • prog: Control program to which to add programs to.

  • partialsType: Data type used in intermediate calculations.

  • debugPrefix: String annotation.

  • planningCache: The matmul planning cache.

poplar::Tensor rnnFwdSequence(poplar::Graph &graph, poplar::program::Sequence &prog, const poplar::Tensor &fwdStateInit, const poplar::Tensor *weightedIn, const poplar::Tensor &biases, const poplar::Tensor &feedFwdWeights, const poplar::Tensor &feedbackWeights, const poplar::Tensor &prevLayerActs, const popnn::NonLinearityType &nonLinearityType, const poplar::Type &partialsType, bool inferenceOnly, const std::string &debugPrefix, poplin::matmul::PlanningCache *planningCache = nullptr)

Perform the forward part of the RNN layer.

The feedback part of the RNN layer must be preceded by the feedforward part of the RNN layer to complete the layer.

The following definitions are used below:

  • numSteps is the number of steps

  • batchSize is the batchSize

  • inputSize is the size of the input for each step

  • outputSize is the size of the output for each step

See

forwardWeightInput

Return

Forward state tensor for all steps [0:seqSize)

Parameters
  • graph: Graph object.

  • prog: Control program.

  • fwdStateInit: Forward state tensor for initial step.

  • weightedIn: Preweighted input, or nullptr if Wff is to be applied.

  • biases: Biases.

  • feedFwdWeights: Input weights Wff.

  • feedbackWeights: Feedback weights Wfb.

  • prevLayerActs: Activations from previous layer (output from feedforward part of the RNN layer.

  • nonLinearityType: Non linearity used for the output activations.

  • partialsType: Data type for intermediates.

  • inferenceOnly: Whether the RNN layer is for inference only. If true, we can ignore backwards and weight update passes

  • debugPrefix: Debug prefix string.

  • planningCache: The matmul planning cache.

std::tuple<poplar::Tensor, poplar::Tensor, poplar::Tensor, poplar::Tensor> rnnBwdSequence(poplar::Graph &graph, bool doWU, bool ignoreInputGradientCalc, poplar::program::Sequence &prog, const poplar::Tensor &fwdStateInit, const poplar::Tensor &fwdState, const poplar::Tensor &biases, const poplar::Tensor &feedFwdWeights, const poplar::Tensor &feedbackWeights, const poplar::Tensor &outGradient, const poplar::Tensor &actIn, const popnn::NonLinearityType &nonLinearityType, const poplar::Type &partialsType, const std::string &debugPrefix, poplin::matmul::PlanningCache *planningCache = nullptr)

Perform the feedback part of the RNN layer.

The feedback part of the RNN layer must be preceded by the feedforward part of the RNN layer to complete the layer.

The following definitions are used below:

  • numSteps is the number of steps

  • batchSize is the batchSize

  • inputSize is the size of the input for each step

  • outputSize is the size of the output for each step

See

forwardWeightInput

Return

Returns four tensors:

  • gradients for previous layer

  • input weight deltas

  • output weight deltas

  • bias deltas

    When doWU is false the weight and bias deltas are not calculated

Parameters
  • graph: Graph object

  • doWU: Calculate weight updates

  • ignoreInputGradientCalc: Do not calculate the gradients over the input weights

  • prog: Control program

  • fwdStateInit: Forward state tensor for initial step

  • fwdState: Forward state tensor for all steps [0:seqSize)

  • biases: Biases

  • feedFwdWeights: Input weights Wff

  • feedbackWeights: Feedback weights Wfb

  • outGradient: Gradient from next layer

  • actIn: Activations from previous layer (output from feedforward part of the RNN layer

  • nonLinearityType: Non linearity used for the output activations

  • partialsType: Data type for intermediates

  • debugPrefix: Debug prefix string

  • planningCache: The matmul planning cache.

4.6.17. popnn/SpatialSoftMax.hpp

namespace popnn

Functions used in neural networks.

Functions

std::pair<poplar::Tensor, poplar::Tensor> spatialSoftMax2D(poplar::Graph &graph, poplar::program::Sequence &prog, const poplar::Tensor &fields, float temperature, bool disableSoftmax = false, const std::string &name = "")

Implements a spatial softmax specialised for 2D input fields.

This computes the expected coordinates (normalised to be in [-1.0, 1.0]) for every 2D field in the input tensor. A (trainable) temperature scalar is added which normalises the softmax across the fields.

The output of the spatial softmax (first tensor in the returned pair) is a set of expected x and y coordinates for the maximum activation in each field. This result has shape {F, 2} where F is the number of fields. Y-coordinates run down the first column and X-coordinates down the second column to preserve (row,column) indexing order into the original fields.

Return

A pair of tensors. First is the output of the spatial-softmax, second is scalar temperature variable.

Parameters
  • graph: Graph to which variables and vertices will be added.

  • prog: Program to which operations will be added.

  • fields: The input Tensor. Must have rank 3. Interpretation is a set of 2D scalar fields of identical height (H) and width (W) given by the two inner dimensions (so shape is {F, H, W} where F is the number of fields).

  • temperature: Initial value for the softmax scaling/normalisation parameter.

  • name: Optional name used as prefix for introduced variables.

  • disableSoftmax: Turns off softmax computation in this function. This is useful if you have already computed a softmax over all the fields due to other processing or for test/debug.