6. Python API

6.1. poprt module

class poprt.Converter(*, input_shape=None, convert_version=11, precision='fp32', checkpoints=None, eightbitsio=False, fp16_skip_op_types=None, skip_passes=None, used_passes=[], check=False, disable_fast_norm=False, pack_args=None, fp8_skip_op_names=None, fp8_params='F143, F143, 0, 0', quantize=False, enable_insert_remap=False, enable_erf_gelu=False, serialize_matmul=None, serialize_matmul_add=None, merge_matmul=None, merge_matmul_add=None, remap_mode='after_matmul', max_tensor_size=-1, infer_shape_ahead=False, enable_avoid_overflow_patterns=False, disable_progress_bar=False, batch_size=None, batch_axis=None, remove_outputs=[], logger=<Logger poprt (WARNING)>)

Convert genernal ONNX model to IPU friendly ONNX model.

Parameters
  • input_shape (Dict[str, List[int]]) –

  • convert_version (int) –

  • precision (str) –

  • checkpoints (str) –

  • eightbitsio (bool) –

  • fp16_skip_op_types (str) –

  • skip_passes (str) –

  • used_passes (List[str]) –

  • check (bool) –

  • disable_fast_norm (bool) –

  • pack_args (Dict) –

  • fp8_skip_op_names (str) –

  • fp8_params (str) –

  • quantize (bool) –

  • enable_insert_remap (bool) –

  • enable_erf_gelu (bool) –

  • serialize_matmul (Dict[str, str]) –

  • serialize_matmul_add (Dict[str, str]) –

  • merge_matmul (str) –

  • merge_matmul_add (str) –

  • remap_mode (str) –

  • max_tensor_size (int) –

  • infer_shape_ahead (bool) –

  • enable_avoid_overflow_patterns (bool) –

  • disable_progress_bar (bool) –

  • batch_size (int) –

  • batch_axis (int) –

  • remove_outputs (List[str]) –

  • logger (Logger) –

convert(model)

Convert genernal ONNX model to IPU friendly ONNX model.

Parameters
  • model (ModelProto) – A ONNX ModelProto class object to be converted.

  • logger

Returns

A ONNX ModelProto class object representing the ONNX model.

Return type

ModelProto

6.2. poprt.compiler module

class poprt.compiler.Compiler

Compile ONNX model to PopEF.

Return type

None

static compile(model: str, outputs: List[str], options: poprt._compiler.CompilerOptions = <poprt._compiler.CompilerOptions object at 0x7fce2f0fc330>) poprt::Executable
Parameters
Return type

Executable

static compile_and_export(model: str, outputs: List[str], filename: str, options: poprt._compiler.CompilerOptions = <poprt._compiler.CompilerOptions object at 0x7fce4ccca3f0>) None
Parameters
Return type

None

static compile_and_get_summary_report(model: str, outputs: List[str], options: poprt._compiler.CompilerOptions = <poprt._compiler.CompilerOptions object at 0x7fce2f0fc4f0>, reset_profile: bool = True) str
Parameters
Return type

str

class poprt.compiler.CompilerOptions
Return type

None

6.3. poprt.runtime module

class poprt.runtime.Runner(popef, config=None)

Load PopEF model, and execute.

Parameters
  • popef (Union[str, Executable]) – input popef

  • config (Union[RuntimeConfig, PackRunnerConfig]) – runtime config

Return type

None

execute(input, output)

execute runner.

Parameters
Return type

None

class poprt.runtime.DeviceManager

Device Manager.

Return type

None

get_device(num_ipus)

Get devices.

Parameters

num_ipus (int) – num_ipus

Return type

Device

get_num_devices()

Get the number of devices.

Return type

int

get_specific_device(device_id)

Get specific devices.

Parameters

device_id (int) – target device id

Return type

Device

ipu_hardware_version()

Get IPU version.

ipu21: C600 cards

ipu2: mk2/Bow cards

Return type

str

6.4. poprt.frontend module

class poprt.frontend.OnnxFrontend(path, **kwargs)

Onnx Frontend.

Parameters

path (str) – input model path

Return type

None

get_onnx_name(dir_or_name)

Filter out non onnx file.

Parameters
  • files – list of file name

  • dir_or_name (str) –

Returns

ONNX Model if there are only one onnx, otherwise throw error.

Return type

Optional[str]

load_model()

Load ONNX Model.

Parameters

dir_or_name – directory or name of the model. If directory, there should only one model

Returns

ONNX Model

Return type

ModelProto

class poprt.frontend.TensorflowFrontend(path, *, saved_model=True, signature_def='', tag='', opset=11, inputs_as_nchw=None, outputs_as_nchw=None, input_shape=None, outputs=None, **kwargs)

TensorFlow Frontend.

Parameters
  • path (str) – input model path

  • saved_model (bool) – whether is tf saved_model

  • signature_def (str) – signature_def from saved_model to use

  • tag (str) – tag to use for saved_model

  • opset (int) – opset version to use for onnx domain in tf frontend

  • inputs_as_nchw (str) – transpose inputs as from nhwc to nchw

  • outputs_as_nchw (str) – transpose outputs as from nhwc to nchw

  • output_names – model output_names (optional for saved_model)

  • input_shape (Dict) –

  • outputs (str) –

Return type

None

load_model()

Load tensorflow model and convert to onnx ModelProto.

Return type

ModelProto

6.5. poprt.backends module

class poprt.backends.Backend(path_or_bytes, *, export_popef=None, compiler_options=<poprt.compiler.CompilerOptions object>, runtime_options=poprt.runtime.RuntimeConfig{deviceWaitConfig=poprt.runtime.DeviceWaitConfig{timeoutSec=1, sleepTimeSec=6}, timeoutNS=10000000, threadSafe=True, validateIOParams=True, batchingDim=4294967295, checkPackageHash=True, ringBufferSizeMultiplier=2, autoReset=False, flushOnWaitingOutputs=False, batchSizeTimeoutNS=9223372036854775807, dataParallelTimeoutNS=9223372036854775807, isBatchSizeTimeoutEnabled=False, requestTracepointsBufferSize=1000, }, align_output_dtype=False, logger=None)

PopRT Backend.

Parameters
  • path_or_bytes (Union[AnyStr, IO[bytes], onnx.ModelProto]) – input onnx model

  • export_popef (str) – target PopEF export path

  • compiler_options (compiler.CompilerOptions) – compiler options, see poprt.compiler.CompilerOptions

  • runtime_options (runtime.AnyConfig) – runtime options, see poprt.runtime.RuntimeConfig

  • align_output_dtype (bool) – flag to align output dtype based on the onnx model. Backend.run also have parameter align_output_dtype, the value will be True if one of them is set to be True

  • logger (logging.Logger) – custom logger

Return type

None

get_io_info()

Return meta info of input/outputs, include dtype, name, shape.

Return type

tuple[Dict[str, Any], Dict[str, Any]]

run(output_names, inputs, align_output_dtype=False)

Run the Model.

Parameters
  • output_names (List[str]) – output tensor names

  • inputs (Dict[str, ndarray]) – input tensor data

  • align_output_dtype (bool) – flag to align output dtype based on the onnx model

Return type

List[ndarray]

set_opaque_blobs()

Pass dynamic input anchor info to pack.

Return type

None

class poprt.backends.ORTBackend(path_or_bytes, sess_options=None, providers=None, provider_options=None, lazy_load=False, **kwargs)

Bases: Backend

onnxruntime.InferenceSession API compatible Backend.

Parameters
  • path_or_bytes – input onnx model

  • sess_optionsonnxruntime.InferenceSession compatible API, not used

  • providersonnxruntime.InferenceSession compatible API, not used

  • provider_optionsonnxruntime.InferenceSession compatible API, not used

  • lazy_load – ORTBackend will load ONNX model by default, set to True to prevent it

  • **kwargs – see poprt.Backend for more args

Return type

None

run(output_names, input_feed, run_options=None)

Run the Model.

Parameters
  • output_names – output tensor names

  • inputs – input tensor data

  • align_output_dtype – flag to align output dtype based on the onnx model

Return type

List[ndarray]

6.6. poprt.quantizer module

poprt.quantizer.quantize(onnx_model, input_model, output_dir, data_preprocess=None, precision='fp8', quantize_loss_type='kld', num_of_layers_keep_fp16=0, options=None)

Quantize the model according strategy. At now, we only support SimpleQuantizer.

Parameters
  • onnx_model (ModelProto) – onnx ModelProto

  • input_model (str) – the origin model

  • data_preprocess (Optional[str]) – path of pickle format file for data preprocessing, the storage format is {input_name_1: ndarray_1, input_name_2: ndarray_2, …}

  • precision (typing_extensions.Literal[fp8, fp8_weight]) – convert the model to the specfied type

  • output_dir (str) – the output dir

  • options (Optional[Dict[str, Any]]) – options

  • quantize_loss_type (str) –

  • num_of_layers_keep_fp16 (int) –

Returns

A quantized onnx ModelProto

Return type

ModelProto

class poprt.quantizer.FP8Quantizer(output_dir, loss_type, data_preprocess=None, precision='fp8', num_of_layers_keep_fp16=0, options=None)

Return the Input Model.

Parameters
  • output_dir (str) –

  • loss_type (str) –

  • data_preprocess (str) –

  • precision (typing_extensions.Literal[fp8, fp8_weight]) –

  • num_of_layers_keep_fp16 (int) –

  • options (Dict[str, Any]) –

6.7. poprt.passes module

class poprt.Pass(*args, **kwargs)

Abstract Base Class for Passes.

A new Pass could be like:

import onnx
from poprt.passes import register, Pass


@register('dummy_pass')
class Dummy(Pass):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)

    def run(self, onnx_model: onnx.ModelProto) -> onnx.ModelProto:
        print(f"producer_name: {onnx_model.producer_name}")
        return onnx_model
Return type

None

static against_passes(pass_names)

Register against property for a Pass.

Passes can’t work with against passes.

Parameters

pass_names (List[str]) –

Return type

Callable[[Any], PassReg]

static constraint_passes(constraint_name, pass_names)

Register constraints for pass.

valid constraints are against, depend, before

Parameters
  • constraint_name (str) –

  • pass_names (List[str]) –

Return type

Callable[[Any], PassReg]

static get_pass(name, *args, **kwargs)

Get a Pass by registered name.

Parameters

name (str) – registered name of a Pass

Returns

a Pass instance

Return type

Pass

Example:

import poprt

# get a Pass with parameters
onnx_model = poprt.get_pass('float_to_half', skip_op_types=['Gelu'])(onnx_model)

poprt.get_pass('model_overview')(onnx_model)
static get_registered_passes()

Get all registered Passes.

Return type

Dict[str, PassReg]

static get_typed_registered_passes(pass_type)

Get typed registered Passes.

Parameters

pass_type (Any) –

Return type

Dict[str, Pass]

static property_register(k, v)

Register a property for Pass.

Parameters
Return type

Callable[[Any], PassReg]

static register_pass(pass_name)

Register a Pass.

Parameters

pass_name (str) –

Return type

Callable[[Any], PassReg]

run(onnx_model)

Run Pass, inherited subclasses should override this method.

Parameters

onnx_model (ModelProto) – input onnx model

Returns

the optimized onnx model

Return type

ModelProto

traverse_graph(graph, transform, is_main_graph=True)

Traverse a GraphProto and transform GraphProtos.

Parameters
  • graph (GraphProto) – Input Graph.

  • transform (Callable[[GraphProto, bool], GraphProto]) – Transform function.

  • is_main_graph (bool) –

Return type

GraphProto

class poprt.PassManager(used_passes=[], gather_ir_passes=False)

Manage Passes.

Parameters
  • used_passes (List[Union[str, Pass]]) – passes that will be used

  • gather_ir_passes (bool) – gather onnx ir passes and execute it in one turn.

Return type

None

Example:

import poprt

pm = poprt.PassManager(
    [
        'model_overview',
        'float_to_half',
        poprt.get_pass('model_overview'),
    ]
)

pm.run(onnx_model)
add_passes(used_passes=[], gather_ir_passes=False)

Add passes for PassManager.

Parameters
  • used_passes (List[Union[str, Pass]]) – passes that will be used

  • gather_ir_passes (bool) – gather onnx ir passes and execute it in one turn.

Return type

None

get_all_pass_names()

Get all Pass names.

Return type

List[str]

get_passes()

Get all Passes.

Return type

List[Pass]

run(onnx_model)

Apply passes to the onnx model.

Parameters

onnx_model (ModelProto) – onnx model that will be optimized

Return type

ModelProto

sort_passes()

Solve Pass dependency.

6.7.1. Built-in passes

Refer to the Section 5.1, Passes section for more details about passes.

class poprt.passes.add_checkpoints.AddCheckpoints(checkpoints)

Add intermediate tensor to output.

Parameters

checkpoints (List[str]) –

Return type

None

This pass is registered as add_checkpoints.

class poprt.passes.apply_host_concat_split.ApplyHostConcatSplit(merged_inputs)

Merge model inputs with the same shape.

NOTE: this is an experimental feature. Only tested on merging 2D inputs.

For example, a onnx graph has 3 inputs with same shape [512, 1] and dtype fp16. Before this Pass(only show inputs info):

+--+-----+---+
+-512*1*fp16-+

+--+-----+---+
+-512*1*fp16-+

+--+-----+---+
+-512*1*fp16-+

After applying this Pass:

                   +------+  -> +--+-----+---+
+------------+     |      |     +-512*1*fp16-+
|            |     |      |
| 3*512*fp16 | --> | HCSR |  -> +--+-----+---+
|            |     | Node |     +-512*1*fp16-+
+------------+     |      |
                   |      |  -> +--+-----+---+
                   +------+     +-512*1*fp16-+

The raw inputs will be replaced with one new input with shape [3, 512] and same dtype. The HCSR Node is a custom operation equal to Split + Reshape. it has 3 new outputs, these outputs have same shape and data from raw model inputs.

Parameters

merged_inputs (List[Any]) –

This pass is registered as apply_host_concat_split.

class poprt.passes.apply_ir_pass.ApplyIrPass(passes=[])

Apply passes based on onnx IR.

Parameters

passes (List[str]) –

Return type

None

This pass is registered as apply_ir_pass.

class poprt.passes.auto_insert_remap.AutoInsertRemap(remap_mode='after_matmul')

Insert remap after matmul.

This is an experimental feature. There are two different insert mode: after_matmul and before_add. For after_matmul mode, it’s more general but more likely OOM, for before_add mode, it’s target to reduce cycles of attention + mask in transformer- based model.

Parameters

remap_mode (str) –

Return type

None

This pass is registered as auto_insert_remap.

class poprt.passes.workarounds.BatchNormWorkaround(*args, **kwargs)

Workaround for BatchNorm Operator.

Return type

None

This pass is registered as batchnorm_workaround.

class poprt.passes.check_with_fake_data.CheckWithFakeData(origin_model)

Checking model with fake data using onnxruntime.

Parameters

origin_model (ModelProto) –

Return type

None

This pass is registered as check_with_fake_data.

class poprt.passes.const_batch_size.ConstBatchSize(const_batch_size=1)

Convert unknown batch size to a const value.

Parameters

const_batch_size (int) –

Return type

None

This pass is registered as const_batch_size.

class poprt.passes.const_input_shape.ConstInputShape(const_input_shape={}, batch_size=None, batch_axis=None)

Convert input shape to const values.

Parameters
  • const_input_shape (Dict[str, Any]) –

  • batch_size (int) –

  • batch_axis (int) –

This pass is registered as const_input_shape.

class poprt.passes.constant_folding.ConstantFolding(max_tensor_size=- 1)

Support constant folding.

Parameters

max_tensor_size (int) –

Return type

None

This pass is registered as constant_folding.

class poprt.passes.workarounds.CumSumWorkaround(*args, **kwargs)

Workaround for CumSum Operator.

Return type

None

This pass is registered as cumsum_workaround.

class poprt.passes.double_to_float.DoubleToFloat(*args, **kwargs)

Transfer double to float(only for initializer).

Return type

None

This pass is registered as double_to_float.

class poprt.passes.eight_bits_io.EightBitsIO

Insert norm operator after input image.

This pass is registered as eight_bits_io.

class poprt.passes.apply_ir_pass.eliminate_deadend(*args, **kwargs)
Return type

None

This pass is registered as eliminate_deadend.

class poprt.passes.apply_ir_pass.eliminate_duplicate_initializer(*args, **kwargs)
Return type

None

This pass is registered as eliminate_duplicate_initializer.

class poprt.passes.apply_ir_pass.eliminate_identity(*args, **kwargs)
Return type

None

This pass is registered as eliminate_identity.

class poprt.passes.apply_ir_pass.eliminate_nop_arithmetic(*args, **kwargs)
Return type

None

This pass is registered as eliminate_nop_arithmetic.

class poprt.passes.apply_ir_pass.eliminate_nop_cast(*args, **kwargs)
Return type

None

This pass is registered as eliminate_nop_cast.

class poprt.passes.apply_ir_pass.eliminate_nop_expand(*args, **kwargs)
Return type

None

This pass is registered as eliminate_nop_expand.

class poprt.passes.apply_ir_pass.eliminate_nop_flatten(*args, **kwargs)
Return type

None

This pass is registered as eliminate_nop_flatten.

class poprt.passes.apply_ir_pass.eliminate_nop_if(*args, **kwargs)
Return type

None

This pass is registered as eliminate_nop_if.

class poprt.passes.apply_ir_pass.eliminate_nop_pad(*args, **kwargs)
Return type

None

This pass is registered as eliminate_nop_pad.

class poprt.passes.apply_ir_pass.eliminate_nop_reshape(*args, **kwargs)
Return type

None

This pass is registered as eliminate_nop_reshape.

class poprt.passes.apply_ir_pass.eliminate_nop_transpose(*args, **kwargs)
Return type

None

This pass is registered as eliminate_nop_transpose.

class poprt.passes.apply_ir_pass.eliminate_unused_initializer(*args, **kwargs)
Return type

None

This pass is registered as eliminate_unused_initializer.

class poprt.passes.erf_gelu_pattern.ErfGeluPattern(*args, **kwargs)

Recognise the pattern of Erf Gelu Op and replace the pattern with Erf Gelu.

Return type

None

This pass is registered as erf_gelu_pattern.

class poprt.passes.apply_ir_pass.extract_constant_to_initializer(*args, **kwargs)
Return type

None

This pass is registered as extract_constant_to_initializer.

class poprt.passes.fill_squeeze_axes.FillSqueezeAxes(*args, **kwargs)

Fill the empty axes of Squeeze Op to ensure that shape-inference work.

Return type

None

This pass is registered as fill_squeeze_axes.

class poprt.passes.final_check.FinalCheck(*args, **kwargs)

Final check for dtype and shape of the converted model.

Return type

None

This pass is registered as final_check.

class poprt.passes.workarounds.FloatOpsWorkaround(*args, **kwargs)

Workaround for Operators which are required with float32 / float16 inputs.

Return type

None

This pass is registered as float_ops_workaround.

class poprt.passes.float_to_fp8.Float2FP8(fp8_params=['F143', 'F143', 0, 0], skip_op_names=[], convert_model='fp8', fp8_input_dict=None, fp8_weight_dict=None)

Convert a model from fp32 or fp16 to fp8.

Parameters
  • fp8_params (List[Union[typing_extensions.Literal[F143, F152], str]]) – Set parameters to fp8 model, the format is [input_format, weight_format, input_scale, weight_scale]

  • skip_op_names (List[str]) – The Op names which will keep fp32/fp16 in fp8 mode, such as [‘Conv_1’, ‘Conv_2’]

  • convert_model (typing_extensions.Literal[fp8, fp8_weight]) – Specifies which type the model is converted to, can be set to ‘fp8’ or ‘fp8_weight’

  • fp8_input_dict (Dict[str, int]) – Set parameters for each fp8 input node of fp8 model, if it’s not None, fp8_params will be discarded

  • fp8_weight_dict (Dict[str, int]) – Set parameters for each fp8 weight node of fp8 model, if it’s not None, fp8_params will be discarded

Return type

None

This pass is registered as float_to_fp8.

class poprt.passes.float_to_half.Float2Half(skip_op_types=[], enable_avoid_overflow_patterns=False)

Convert a model from fp32 to fp16.

Parameters
  • skip_op_types (List[str]) –

  • enable_avoid_overflow_patterns (bool) –

Return type

None

This pass is registered as float_to_half.

class poprt.passes.float_to_mixed.Float2Mixed

Convert a model from fp32 to mixed precision.

Return type

None

This pass is registered as float_to_mixed.

class poprt.passes.apply_ir_pass.fuse_bn_into_conv(*args, **kwargs)
Return type

None

This pass is registered as fuse_bn_into_conv.

class poprt.passes.fuse_bn_into_gemm.FuseBnIntoGemm

Fuse BatchNormalization to Matmul/Gemm.

Condition:

condition 1: Matmul/Gemm use initializer condition 2: No multi outputs in Gemm/Matmul condition 3: Initializers used across operaters is not supported

Return type

None

This pass is registered as fuse_bn_into_gemm.

class poprt.passes.fuse_cast_into_onehot.FuseCastIntoOnehot

Fuse Cast into OneHot.

Return type

None

This pass is registered as fuse_cast_into_onehot.

class poprt.passes.apply_ir_pass.fuse_consecutive_cast(*args, **kwargs)
Return type

None

This pass is registered as fuse_consecutive_cast.

class poprt.passes.apply_ir_pass.fuse_consecutive_reshape(*args, **kwargs)
Return type

None

This pass is registered as fuse_consecutive_reshape.

class poprt.passes.apply_ir_pass.fuse_consecutive_squeeze(*args, **kwargs)
Return type

None

This pass is registered as fuse_consecutive_squeeze.

class poprt.passes.apply_ir_pass.fuse_consecutive_transpose(*args, **kwargs)
Return type

None

This pass is registered as fuse_consecutive_transpose.

class poprt.passes.apply_ir_pass.fuse_consecutive_unsqueeze(*args, **kwargs)
Return type

None

This pass is registered as fuse_consecutive_unsqueeze.

class poprt.passes.fuse_mul_into_matmul.FuseMulIntoMatmul

Fuse Mul into MatMul.

Return type

None

This pass is registered as fuse_mul_into_matmul.

class poprt.passes.fused_attention.FusedAttention(*args, **kwargs)

Recognise the pattern of MultiHeadAttention and replace it with Fused MultiHeadAttention. Attention Pattern as below:

Add
|
Reshape  --    --    --
|           \           \
MatMul       MatMul      MatMul
|            |           |
Reshape      Reshape     Reshape
|            |           |
Add          Add         Add
|            |           |
Reshape      Reshape     Reshape

Fused Attention Pattern as below:

Add
|
Concat
|
MatMul
|
Add
|
Reshape
|
Transpose
|
Split
Return type

None

This pass is registered as fused_attention.

class poprt.passes.gelu_pattern.GeluPattern(*args, **kwargs)

Recognise the pattern of Gelu Op and replace the pattern with Gelu.

Return type

None

This pass is registered as gelu_pattern.

class poprt.passes.workarounds.IndicesWorkaround(*args, **kwargs)

Workaround for Gather / GatherElements Operator.

Return type

None

This pass is registered as indices_workaround.

class poprt.passes.insert_attention_mask.InsertAttentionMask(*args, **kwargs)

Replace Reshap-Cast-Sub-Mul with Cast-AttentionMask.

Return type

None

This pass is registered as insert_attention_mask.

class poprt.passes.int64_to_int32.Int64ToInt32(*args, **kwargs)

Transfer int64 to int32.

Return type

None

This pass is registered as int64_to_int32.

class poprt.passes.layer_norm_pattern.LayerNormPattern(*args, **kwargs)

Recognise the pattern of LayerNorm Op and replace the pattern with GroupNorm.

Return type

None

This pass is registered as layer_norm_pattern.

class poprt.passes.layer_precision_compare.LayerPrecisionCompare(origin_model, data_preprocess=None, options=None, output_dir='./')

Compare the output of conv/matmul/gemm operator of the origin model and the fp8 model.

It will randomly takes a batch of data from the calibration for inference, and then records the output of the origin model and the converted model. We use cosine distance to evaluate the error because it is a normalized number that measures the angle between vectors. The closer the value is to 0, the smaller the error. The log will write to a log file.

Parameters
  • origin_model (ModelProto) –

  • data_preprocess (str) –

  • options (Dict[str, Any]) –

  • output_dir (str) –

Return type

None

This pass is registered as layer_precision_compare.

class poprt.passes.manual_sharding.ManualSharding(sharding_info=None, pipelining_info=None)

Shard the graph to several subgraphs manually in terms of specific nodes.

Parameters
Return type

None

This pass is registered as manual_sharding.

class poprt.passes.matmul_rotary_embedding.MatmulRotaryEmbedding

Recognise the pattern of element-wised rotary embedding and replace the pattern with equivalent matmul.

Return type

None

This pass is registered as matmul_rotary_embedding.

class poprt.passes.merge_matmul.MergeMatmul(merge_str=None)
Parameters

merge_str (str) –

Return type

None

This pass is registered as merge_matmul.

class poprt.passes.merge_matmul_add.MergeMatmulAdd(merge_str=None)
Parameters

merge_str (str) –

Return type

None

This pass is registered as merge_matmul_add.

class poprt.passes.model_overview.ModelOverview(use_print=True, *args, **kwargs)

Show the overview of the model, just print the information to stdout.

Return type

None

This pass is registered as model_overview.

class poprt.passes.move_subgraph_initializer.MoveSubgraphInitializer

Move subgraph’s initializers into main graph.

PopART only search initializers from main graph.

Return type

None

This pass is registered as move_subgraph_initializer.

class poprt.passes.workarounds.OneHotWorkaround(*args, **kwargs)

Workaround for OneHot Op which is required with int32 depth and positive axis.

Return type

None

This pass is registered as onehot_workaround.

class poprt.passes.overlap_io.OverlapIO

Enable overlap io.

Return type

None

This pass is registered as overlap_io.

class poprt.passes.packed_transformer.PackedTransformer(args)

Recognise the pattern of SelfAttention and replace it with Packed SelfAttention.

This pass is registered as packed_transformer.

class poprt.passes.post_expand.PostExpand(*args, **kwargs)
Return type

None

This pass is registered as post_expand.

class poprt.passes.pre_scale.PreScale(*args, **kwargs)

Pre scale: attention matrix Q to Q/sqrt(d), and remove 1/sqrt(d) node.

Return type

None

This pass is registered as pre_scale.

class poprt.passes.remove_duplicated_initializer.RemoveDuplicatedInitializer

Remove duplicated initializer to save memory.

Return type

None

This pass is registered as remove_duplicated_initializer.

class poprt.passes.workarounds.RemoveEmptyConcatInputs(*args, **kwargs)

Workaround for Concat Op which does not support empty inputs in PopART.

Return type

None

This pass is registered as remove_empty_concat_inputs.

class poprt.passes.remove_initializer_from_input.RemoveInitializerFromInput(*args, **kwargs)

Remove initializer from model inputs.

Model: https://github.com/onnx/models/blob/main/vision/classification/resnet/model/resnet50-v1-7.onnx

Return type

None

This pass is registered as remove_initializer_from_input.

class poprt.passes.remove_input_cast.RemoveInputCast(*args, **kwargs)

Remove input cast: input(fp16)->cast(fp16->int32)->gather to input(int32)->gather.

Return type

None

This pass is registered as remove_input_cast.

class poprt.passes.remove_outputs.RemoveOutputs(outputs=[])

Remove specific outputs and useless structures of the graph.

Parameters

outputs (List[str]) –

Return type

None

This pass is registered as remove_outputs.

class poprt.passes.replace_bn_with_mul_add.ReplaceBNWithMulAdd(*args, **kwargs)

Replace BatchNormalization Op with Mul + Add.

Return type

None

This pass is registered as replace_bn_with_mul_add.

class poprt.passes.replace_castlike.ReplaceCastLike(*args, **kwargs)

Replace onnx CastLike op to Cast.

Return type

None

This pass is registered as replace_castlike.

class poprt.passes.replace_clip_empty_inputs.ReplaceClipInputs(*args, **kwargs)

Replace Clip Op empty inputs.

Return type

None

This pass is registered as replace_clip_empty_inputs.

class poprt.passes.replace_consecutive_cast_with_notzero.ReplaceConsecuiveCastWithNotZero(*args, **kwargs)

Recognise the pattern of consecutive Cast Ops and replace the pattern with a NotZero Op.

Return type

None

This pass is registered as replace_consecutive_cast_with_notzero.

class poprt.passes.replace_div_with_mul.ReplaceDivWithMul(*args, **kwargs)

Replace Div with Mul if the divisor is constant.

Model: https://github.com/onnx/models/blob/main/text/machine_comprehension/gpt-2/model/gpt2-10.onnx

Return type

None

This pass is registered as replace_div_with_mul.

class poprt.passes.apply_ir_pass.replace_einsum_with_matmul(*args, **kwargs)
Return type

None

This pass is registered as replace_einsum_with_matmul.

class poprt.passes.replace_erf_with_erfv2.ReplaceErfWithErfV2(*args, **kwargs)

Replace Erf Op with ErfV2.

ErfV2 is more efficient with bigger error.

Return type

None

This pass is registered as replace_erf_with_erfv2.

class poprt.passes.replace_gemm_with_matmul.ReplaceGemmWithMatMul(*args, **kwargs)

replace Gemm with MatMul in onnx model.

Return type

None

This pass is registered as replace_gemm_with_matmul.

class poprt.passes.replace_greater_or_equal.ReplaceGreaterOrEqual(*args, **kwargs)

Replace GreaterOrEqual Op with Less Op and Not Op.

Return type

None

This pass is registered as replace_greater_or_equal.

class poprt.passes.replace_groupnorm_with_fast_norm.ReplaceGroupNormWithFastNorm(*args, **kwargs)

Replace GroupNormalization to FastNorm if datatype is fp16 and num_groups=1.

Return type

None

This pass is registered as replace_groupnorm_with_fast_norm.

class poprt.passes.replace_half_reducemean.ReplaceHalfReduceMean(*args, **kwargs)

Replace ReduceMean Op in fp16 mode with ReduceSum + Mul in case of overflow.

Return type

None

This pass is registered as replace_half_reducemean.

class poprt.passes.replace_hardswish.ReplaceHardSwish(*args, **kwargs)

Replace HardSwish Op with HardSigmoid Op and Mul Op.

Replacement is required for the opset before 14 since HardSwish is only supported 14.

Return type

None

This pass is registered as replace_hardswish.

class poprt.passes.replace_isinf.ReplaceIsInf(*args, **kwargs)

Replace IsInf Op with IsInfV2 Op(support detect_negative/_positive).

Return type

None

This pass is registered as replace_isinf.

class poprt.passes.replace_less_or_equal.ReplaceLessOrEqual(*args, **kwargs)

Replace LessOrEqual Op with Less Op and Not Op.

Return type

None

This pass is registered as replace_less_or_equal.

class poprt.passes.replace_nonzero.ReplaceNonZero(*args, **kwargs)

Replace NonZero by ArgMax when the number of nonzero element is known.

Right now only single element is supported, going to support multi elements with TopK.

Return type

None

This pass is registered as replace_nonzero.

class poprt.passes.replace_pow.ReplacePow(*args, **kwargs)

Replace Pow Op with Square Op and Mul Op.

Return type

None

This pass is registered as replace_pow.

class poprt.passes.replace_round.ReplaceRound(*args, **kwargs)

Replace Round Op with RoundV2 Op(half to even mode).

Return type

None

This pass is registered as replace_round.

class poprt.passes.replace_softmax.ReplaceSoftmax(*args, **kwargs)

Replace Softmax Op with SoftmaxV2 Op when the axis is the lowest dim and the lowest dim is an odd.

Return type

None

This pass is registered as replace_softmax.

class poprt.passes.replace_where_mask.ReplaceWhereMask(*args, **kwargs)

Change attention_mask method from where to add.

Return type

None

This pass is registered as replace_where_mask.

class poprt.passes.replace_where_with_mul_add.ReplaceWhereWithMulAdd

Where(condition, X, Y) = Add(Mul(condition, X), Mul(neg_condition, Y)).

This pass is registered as replace_where_with_mul_add.

class poprt.passes.replace_where_with_wherev2.ReplaceWhereWithWhereV2(*args, **kwargs)

Replace Where Op with WhereV2.

Return type

None

This pass is registered as replace_where_with_wherev2.

class poprt.passes.serialize_matmul.SerializeMatmul(serialize_dict=None)

Enable to serialize Matmul Op to save memory on chip.

Parameters

serialize_dict (Dict) –

Return type

None

This pass is registered as serialize_matmul.

class poprt.passes.serialize_matmul_add.SerializeMatmulAdd(serialize_dict=None)
Parameters

serialize_dict (Dict) –

Return type

None

This pass is registered as serialize_matmul_add.

class poprt.passes.shape_inference.ReplacePow(*args, **kwargs)

Do shape inference.

Return type

None

This pass is registered as shape_inference.

class poprt.passes.workarounds.TopKWorkaround(*args, **kwargs)

Workaround for TopK Op which is required with positive axis.

Return type

None

This pass is registered as topk_workaround.

class poprt.passes.apply_ir_pass.trace_folding(*args, **kwargs)
Return type

None

This pass is registered as trace_folding.

class poprt.passes.apply_ir_pass.unique_name_for_nodes(*args, **kwargs)
Return type

None

This pass is registered as unique_name_for_nodes.