Logo
PyTorch for the IPU: User Guide
Version: 3.1.0
  • 1. Introduction
    • 1.1. Data batching
    • 1.2. Parallel and Distributed execution
    • 1.3. Constraints
    • 1.4. Other resources
  • 2. Installation
    • 2.1. Version compatibility
    • 2.2. Using a Python virtual environment
    • 2.3. Setting the environment variables
    • 2.4. Validating the setup
  • 3. From PyTorch to PopTorch
    • 3.1. Preparing your data
    • 3.2. Creating your model
      • 3.2.1. Training
      • 3.2.2. Inference
    • 3.3. The training loop
    • 3.4. Multiple/custom losses
    • 3.5. Optimizers
    • 3.6. Going further
  • 4. Features
    • 4.1. Options
      • 4.1.1. Setting options via config file
    • 4.2. Model wrapping functions
      • 4.2.1. poptorch.trainingModel
      • 4.2.2. poptorch.inferenceModel
      • 4.2.3. poptorch.PoplarExecutor
      • 4.2.4. poptorch.isRunningOnIpu
    • 4.3. Error handling
      • 4.3.1. Recoverable runtime errors
      • 4.3.2. Unrecoverable runtime errors
      • 4.3.3. Application and other errors
    • 4.4. Multi-IPU execution strategies
      • 4.4.1. Annotations
        • Model partitioning using blocks
        • poptorch.Stage and poptorch.AutoStage
          • poptorch.Stage
          • poptorch.AutoStage
        • poptorch.Phase
        • Advanced annotation with strings
      • 4.4.2. Available execution strategies
        • Pipelined execution
        • Sharded execution
        • Phased execution
          • Serial phased execution
          • Parallel phased execution
          • poptorch.Liveness
      • 4.4.3. Grouping tensor weights across replicas
    • 4.5. Optimizers
      • 4.5.1. Loss scaling
      • 4.5.2. Velocity scaling (SGD combined variant only)
      • 4.5.3. Accumulation types
      • 4.5.4. Constant attributes
      • 4.5.5. Reading and writing optimizer state
    • 4.6. PopTorch ops
      • 4.6.1. poptorch.ctc_beam_search_decoder
      • 4.6.2. poptorch.ipu_print_tensor
      • 4.6.3. poptorch.identity_loss
      • 4.6.4. poptorch.MultiConv
      • 4.6.5. poptorch.nop
      • 4.6.6. poptorch.dynamic_slice
      • 4.6.7. poptorch.serializedMatMul
      • 4.6.8. poptorch.set_available_memory
      • 4.6.9. Miscellaneous functions
    • 4.7. 16-bit float support
    • 4.8. PyTorch buffers
    • 4.9. Creating custom ops
      • 4.9.1. Implementing the custom op
      • 4.9.2. Make the op available to PyTorch
      • 4.9.3. Passing attributes to the custom op
    • 4.10. Precompilation and caching
      • 4.10.1. Caching
      • 4.10.2. Precompilation
    • 4.11. Environment variables
      • 4.11.1. Logging level
      • 4.11.2. Profiling
      • 4.11.3. IPU Model
      • 4.11.4. Wait for an IPU to become available
      • 4.11.5. Enable executable caching
  • 5. Efficient data batching
    • 5.1. poptorch.DataLoader
    • 5.2. poptorch.AsynchronousDataAccessor
      • 5.2.1. Rebatching iterable datasets
    • 5.3. poptorch.Options.deviceIterations
    • 5.4. poptorch.Options.replicationFactor
    • 5.5. poptorch.Options.inputReplicaGrouping
    • 5.6. poptorch.Options.Training.gradientAccumulation
    • 5.7. poptorch.Options.outputMode
  • 6. IPU supported operations
    • 6.1. Torch operations
      • 6.1.1. Tensor operations
        • Creation ops
        • Indexing, slicing, joining and mutating ops
        • Random samplers
      • 6.1.2. Math operations
        • Pointwise ops
        • Reduction ops
        • Comparison ops
        • Other ops
        • BLAS and LAPACK Operations
    • 6.2. Torch.nn operations
      • 6.2.1. Containers
      • 6.2.2. Convolution layers
      • 6.2.3. Pooling layers
      • 6.2.4. Padding layers
      • 6.2.5. Activations
      • 6.2.6. Normalization layers
      • 6.2.7. Recurrent layers
      • 6.2.8. Linear layers
      • 6.2.9. Dropout
      • 6.2.10. Sparse layers
      • 6.2.11. Loss functions
      • 6.2.12. Vision Layers
    • 6.3. 16-bit float operations
    • 6.4. 16-bit float migration
    • 6.5. Gradient computation control
  • 7. Debugging your model
    • 7.1. Inspecting tensors
    • 7.2. Anchoring tensors
    • 7.3. Retrieving tensors
    • 7.4. Inspecting optimiser state
  • 8. Efficient IPU I/O
    • 8.1. Prefetch and Multibuffering
    • 8.2. Overlapping compute and I/O
  • 9. Examples
    • 9.1. MNIST example
  • 10. Experimental features
    • 10.1. Distributed execution without PopRun
    • 10.2. torch.nn.CTCLoss
  • 11. API reference
    • 11.1. Options
    • 11.2. Helpers
    • 11.3. PopTorch Ops
    • 11.4. Model wrapping functions
    • 11.5. Parallel execution
    • 11.6. Optimizers
    • 11.7. Data batching
    • 11.8. Enumerations
  • 12. Index
  • 13. Trademarks & copyright
PyTorch for the IPU: User Guide

13. Trademarks & copyright

Graphcloud®, Graphcore®, Poplar® and PopVision® are registered trademarks of Graphcore Ltd.

Bow™, Bow-2000™, Bow Pod™, Colossus™, In-Processor-Memory™, IPU-Core™, IPU-Exchange™, IPU-Fabric™, IPU-Link™, IPU-M2000™, IPU-Machine™, IPU-POD™, IPU-Tile™, PopART™, PopDist™, PopLibs™, PopRun™, PopTorch™, Streaming Memory™ and Virtual-IPU™ are trademarks of Graphcore Ltd.

All other trademarks are the property of their respective owners.

This software is made available under the terms of the Graphcore End User License Agreement (EULA) and the Graphcore Container License Agreement. Please ensure you have read and accept the terms of the corresponding license before using the software. The Graphcore EULA applies unless indicated otherwise.

Copyright © 2020-2022 Graphcore Ltd. All rights reserved.

Previous

Revision 6858cc24.