Targeting the IPU from TensorFlow 1
- 1. Introduction
- 2. Tutorial
- 3. Targeting the Poplar XLA device
- 4. Compiling and pre-compiling executables
- 5. Training a model
- 6. Efficient IPU I/O
- 7. Example using IPUEstimator
- 8. Example using IPUPipelineEstimator
- 9. Distributed training
- 10. Half-precision floating point and stochastic rounding
- 11. IPU-optimised operations
- 12. IPU Outlined Functions
- 13. Writing custom operations
- 14. IPU host embeddings
- 15. Retrieving information about compilation and execution
- 15.1. Adding an operation to get compilation and execution events
- 15.2. Enabling tracing in the hardware configuration options
- 15.3. Extract the reports from the returned events
- 15.4. Producing reports for use with the PopVision Graph Analyser
- 15.5. Using the IPU Model device for debugging
- 15.6. TensorFlow options for reporting
- 15.7. Reading the Poplar textual summary report
- 15.8. Producing an ELF image of the compilation
- 15.9. Dumping auxiliary Poplar information
- 15.10. XLA graph file naming
- 16. API changes
- 17. Python API
- 17.1. Operations and utilities related to the Graphcore IPU
- 17.2. Compiler interface
- 17.3. Scoping contexts
- 17.4. Infeed queue
- 17.5. Outfeed queue
- 17.6. General utilities
- 17.7. Looping utilities
- 17.8. Distributed training
- 17.9. Horovod
- 17.10. Datasets
- 17.11. Estimators
- 17.12. Keras layers
- 17.13. Operators
- 17.13.1. Custom operations
- 17.13.2. Functional operators
- 17.13.3. Graphcore utility operations
- 17.13.4. IPU specific maths operations
- 17.13.5. Pipelining operators
- 17.13.6. Popnn primitive neural network operators
- 17.13.7. Popnn normalization operators
- 17.13.8. Popnn recurrent neural network operators
- 17.13.9. Popops all to all and all gather operators
- 17.13.10. Popops cross replica operators
- 17.13.11. Popops embedding operators
- 17.13.12. Popops reduce scatter operator
- 17.13.13. Poprand operators
- 17.13.14. Utility operations to be used in replicated mode
- 17.13.15. Summary operations for IPUs
- 17.14. Optimisers
- 17.15. Sharding
- 18. TensorFlow operators supported by the IPU
- 19. Resources
- 20. Index
- 21. Trademarks & copyright