Targeting the IPU from TensorFlow 1
- 1. Introduction
- 2. Tutorial
- 3. Targeting the Poplar XLA device
- 4. Compiling and pre-compiling executables
- 5. Training a model
- 6. Efficient IPU I/O
- 7. Example using IPUEstimator
- 8. Example using IPUPipelineEstimator
- 9. Distributed training
- 10. Half-precision floating point and stochastic rounding
- 11. IPU-optimised operations
- 12. IPU Outlined Functions
- 13. Writing custom operations
- 14. IPU host embeddings
- 15. Retrieving information about compilation and execution
- 16. API changes
- 17. Deprecated profiling functionality
- 17.1. Adding an operation to get compilation and execution events
- 17.2. Enabling tracing in the hardware configuration options
- 17.3. Extract the reports from the returned events
- 17.4. Producing reports for use with the PopVision Graph Analyser
- 17.5. Using the IPU Model device for debugging
- 17.6. Reading the Poplar textual summary report
- 17.7. Producing an ELF image of the compilation
- 18. Python API
- 18.1. Operations and utilities related to the Graphcore IPU
- 18.2. Compiler interface
- 18.3. Scoping contexts
- 18.4. Infeed queue
- 18.5. Outfeed queue
- 18.6. General utilities
- 18.7. Configuration utilities
- 18.8. Looping utilities
- 18.9. Distributed training
- 18.10. Horovod
- 18.11. Datasets
- 18.12. Estimators
- 18.13. Keras layers
- 18.14. Operators
- 18.14.1. Custom operations
- 18.14.2. Functional operators
- 18.14.3. Image operations
- 18.14.4. Graphcore utility operations
- 18.14.5. IPU specific maths operations
- 18.14.6. Pipelining operators
- 18.14.7. Popnn primitive neural network operators
- 18.14.8. Popnn normalization operators
- 18.14.9. Popnn recurrent neural network operators
- 18.14.10. Popops all to all and all gather operators
- 18.14.11. Popops cross replica operators
- 18.14.12. Popops embedding operators
- 18.14.13. Popops reduce scatter operator
- 18.14.14. Poprand operators
- 18.14.15. Utility operations to be used in replicated mode
- 18.14.16. Slicing operators
- 18.14.17. Statistics operators
- 18.14.18. Summary operations for IPUs
- 18.15. Optimisers
- 18.16. Sharding
- 19. TensorFlow operators supported by the IPU
- 20. Resources
- 21. Index
- 22. Trademarks & copyright