Poplar and PopLibs
|
Structure of Recurrent Neural Network (RNN) parameters which allows for any customized implementation of the cellular part of the RNN. More...
#include <Rnn.hpp>
Public Attributes | |
poplar::Type | dataType |
The datatype used for the RNN. | |
std::size_t | batchSize |
The batch size. | |
std::size_t | maxTimeSteps |
The maximum number of RNN time steps. | |
std::size_t | timeSteps |
poplar::Tensor | varTimeSteps |
The run-time number of RNN time steps of dimension [batchSize ] If this tensor is default constructed, the number of time steps for the sequence corresponding to each batch will be set according to the maxTimeSteps member. | |
std::vector< std::size_t > | layerSizes |
For each RNN layer, the layer size parameter needs to be specified for the input and the output. More... | |
Structure of Recurrent Neural Network (RNN) parameters which allows for any customized implementation of the cellular part of the RNN.
std::vector<std::size_t> popnn::rnn::RnnParams::layerSizes |
For each RNN layer, the layer size parameter needs to be specified for the input and the output.
This is done using a 2-element vector where the first element is the input size and the second element is the output size of the RNN layer.
std::size_t popnn::rnn::RnnParams::timeSteps |