| Poplar and PopLibs
    | 
Structure of Recurrent Neural Network (RNN) parameters which allows for any customized implementation of the cellular part of the RNN. More...
#include <Rnn.hpp>
| Public Attributes | |
| poplar::Type | dataType | 
| The datatype used for the RNN. | |
| std::size_t | batchSize | 
| The batch size. | |
| std::size_t | maxTimeSteps | 
| The maximum number of RNN time steps. | |
| std::size_t | timeSteps | 
| poplar::Tensor | varTimeSteps | 
| The run-time number of RNN time steps of dimension [ batchSize] If this tensor is default constructed, the number of time steps for the sequence corresponding to each batch will be set according to themaxTimeStepsmember. | |
| std::vector< std::size_t > | layerSizes | 
| For each RNN layer, the layer size parameter needs to be specified for the input and the output.  More... | |
Structure of Recurrent Neural Network (RNN) parameters which allows for any customized implementation of the cellular part of the RNN.
| std::vector<std::size_t> popnn::rnn::RnnParams::layerSizes | 
For each RNN layer, the layer size parameter needs to be specified for the input and the output.
This is done using a 2-element vector where the first element is the input size and the second element is the output size of the RNN layer.
| std::size_t popnn::rnn::RnnParams::timeSteps |