PyTorch for the IPU: User Guide
Version: 3.1.0
1. Introduction
1.1. Data batching
1.2. Parallel and Distributed execution
1.3. Constraints
1.4. Other resources
2. Installation
2.1. Version compatibility
2.2. Using a Python virtual environment
2.3. Setting the environment variables
2.4. Validating the setup
3. From PyTorch to PopTorch
3.1. Preparing your data
3.2. Creating your model
3.2.1. Training
3.2.2. Inference
3.3. The training loop
3.4. Multiple/custom losses
3.5. Optimizers
3.6. Going further
4. Features
4.1. Options
4.1.1. Setting options via config file
4.2. Model wrapping functions
4.2.1. poptorch.trainingModel
4.2.2. poptorch.inferenceModel
4.2.3. poptorch.PoplarExecutor
4.2.4. poptorch.isRunningOnIpu
4.3. Error handling
4.3.1. Recoverable runtime errors
4.3.2. Unrecoverable runtime errors
4.3.3. Application and other errors
4.4. Multi-IPU execution strategies
4.4.1. Annotations
Model partitioning using blocks
poptorch.Stage and poptorch.AutoStage
poptorch.Stage
poptorch.AutoStage
poptorch.Phase
Advanced annotation with strings
4.4.2. Available execution strategies
Pipelined execution
Sharded execution
Phased execution
Serial phased execution
Parallel phased execution
poptorch.Liveness
4.4.3. Grouping tensor weights across replicas
4.5. Optimizers
4.5.1. Loss scaling
4.5.2. Velocity scaling (SGD combined variant only)
4.5.3. Accumulation types
4.5.4. Constant attributes
4.5.5. Reading and writing optimizer state
4.6. PopTorch ops
4.6.1. poptorch.ctc_beam_search_decoder
4.6.2. poptorch.ipu_print_tensor
4.6.3. poptorch.identity_loss
4.6.4. poptorch.MultiConv
4.6.5. poptorch.nop
4.6.6. poptorch.dynamic_slice
4.6.7. poptorch.serializedMatMul
4.6.8. poptorch.set_available_memory
4.6.9. Miscellaneous functions
4.7. 16-bit float support
4.8. PyTorch buffers
4.9. Creating custom ops
4.9.1. Implementing the custom op
4.9.2. Make the op available to PyTorch
4.9.3. Passing attributes to the custom op
4.10. Precompilation and caching
4.10.1. Caching
4.10.2. Precompilation
4.11. Environment variables
4.11.1. Logging level
4.11.2. Profiling
4.11.3. IPU Model
4.11.4. Wait for an IPU to become available
4.11.5. Enable executable caching
5. Efficient data batching
5.1. poptorch.DataLoader
5.2. poptorch.AsynchronousDataAccessor
5.2.1. Rebatching iterable datasets
5.3. poptorch.Options.deviceIterations
5.4. poptorch.Options.replicationFactor
5.5. poptorch.Options.inputReplicaGrouping
5.6. poptorch.Options.Training.gradientAccumulation
5.7. poptorch.Options.outputMode
6. IPU supported operations
6.1. Torch operations
6.1.1. Tensor operations
Creation ops
Indexing, slicing, joining and mutating ops
Random samplers
6.1.2. Math operations
Pointwise ops
Reduction ops
Comparison ops
Other ops
BLAS and LAPACK Operations
6.2. Torch.nn operations
6.2.1. Containers
6.2.2. Convolution layers
6.2.3. Pooling layers
6.2.4. Padding layers
6.2.5. Activations
6.2.6. Normalization layers
6.2.7. Recurrent layers
6.2.8. Linear layers
6.2.9. Dropout
6.2.10. Sparse layers
6.2.11. Loss functions
6.2.12. Vision Layers
6.3. 16-bit float operations
6.4. 16-bit float migration
6.5. Gradient computation control
7. Debugging your model
7.1. Inspecting tensors
7.2. Anchoring tensors
7.3. Retrieving tensors
7.4. Inspecting optimiser state
8. Efficient IPU I/O
8.1. Prefetch and Multibuffering
8.2. Overlapping compute and I/O
9. Examples
9.1. MNIST example
10. Experimental features
10.1. Distributed execution without PopRun
10.2. torch.nn.CTCLoss
11. API reference
11.1. Options
11.2. Helpers
11.3. PopTorch Ops
11.4. Model wrapping functions
11.5. Parallel execution
11.6. Optimizers
11.7. Data batching
11.8. Enumerations
12. Index
13. Trademarks & copyright
PyTorch for the IPU: User Guide
Please activate JavaScript to enable the search functionality.