Model parallelism with TensorFlow: sharding and pipelining
Version: 1.1.0
1. Model parallelism
2. Sharding
3. Pipelining
4. PopVision™ Graph Analyser tool
5. Trademarks & copyright
Model parallelism with TensorFlow: sharding and pipelining
Model parallelism with TensorFlow: sharding and pipelining
1. Model parallelism
2. Sharding
2.1. Graph sharding
2.1.1. API
2.1.2. Code example
2.2. Limitations of sharding
3. Pipelining
3.1. Overview
3.2. Pipeline operation
3.3. Pipelining API
3.3.1. Inputs and outputs
3.3.2. Device mapping
3.3.3. Pipeline scheduling
3.3.4. Keras API in TensorFlow 2
3.4. Code examples
3.4.1. Inference code examples
3.4.2. Training code examples
3.5. Optimising the pipeline
3.5.1. Recomputation
3.5.2. Variable offloading
3.5.3. Device selection order
3.5.4. Data parallelism
3.5.5. Increase the gradient accumulation count
3.5.6. Profiling
4. PopVision™ Graph Analyser tool
5. Trademarks & copyright