Logo
Model Runtime: User Guide
Version: latest
  • 1. Introduction
  • 2. Model Runtime under the hood
    • 2.1. Finding hardware
    • 2.2. Data transfers
    • 2.3. Executable upload
    • 2.4. Tensor data
    • 2.5. Managing the data sources/targets
    • 2.6. Queues of data
    • 2.7. Buffers
    • 2.8. Conditional execution
  • 3. Model Runner deep dive through examples
    • 3.1. Execution modes
    • 3.2. Replication
    • 3.3. Multithreading
    • 3.4. Frozen inputs
  • 4. Session
    • 4.1. Creating a session
    • 4.2. Uploading user model onto IPU
    • 4.3. Handlers for model tensors
    • 4.4. Running programs
    • 4.5. Retrieving information from Session
    • 4.6. Managing queues of tensor data
    • 4.7. Verification
  • 5. Managing devices
    • 5.1. Device
    • 5.2. Device Manager
  • 6. Queue Manager
  • 7. Tools
    • 7.1. Callbacks benchmark
    • 7.2. Queues benchmark
    • 7.3. Real data
  • 8. Logging
  • 9. Appendix
    • 9.1. Files contain helper functions used by examples
    • 9.2. Generating example PopEF file
  • 10. Model Runtime C++ API reference
    • 10.1. High level API
      • 10.1.1. Device management
      • 10.1.2. Tensor memory representation
      • 10.1.3. Model Runner
    • 10.2. Low level API
      • 10.2.1. Anchor callback management
      • 10.2.2. Queue memory management
      • 10.2.3. Queue management
      • 10.2.4. Runtime management
  • 11. Model Runtime Python API
    • 11.1. High level API
      • 11.1.1. Device management
      • 11.1.2. Tensor memory representation
      • 11.1.3. Model Runner
    • 11.2. Low level API
      • 11.2.1. Anchor callback management
      • 11.2.2. Queue management
      • 11.2.3. Runtime management
  • 12. Legal notices
Model Runtime: User Guide

Model Runtime: User Guide

  • 1. Introduction
  • 2. Model Runtime under the hood
    • 2.1. Finding hardware
    • 2.2. Data transfers
    • 2.3. Executable upload
    • 2.4. Tensor data
    • 2.5. Managing the data sources/targets
    • 2.6. Queues of data
    • 2.7. Buffers
    • 2.8. Conditional execution
  • 3. Model Runner deep dive through examples
    • 3.1. Execution modes
    • 3.2. Replication
    • 3.3. Multithreading
    • 3.4. Frozen inputs
  • 4. Session
    • 4.1. Creating a session
    • 4.2. Uploading user model onto IPU
    • 4.3. Handlers for model tensors
    • 4.4. Running programs
    • 4.5. Retrieving information from Session
    • 4.6. Managing queues of tensor data
    • 4.7. Verification
  • 5. Managing devices
    • 5.1. Device
    • 5.2. Device Manager
  • 6. Queue Manager
  • 7. Tools
    • 7.1. Callbacks benchmark
    • 7.2. Queues benchmark
    • 7.3. Real data
  • 8. Logging
  • 9. Appendix
    • 9.1. Files contain helper functions used by examples
    • 9.2. Generating example PopEF file
  • 10. Model Runtime C++ API reference
    • 10.1. High level API
      • 10.1.1. Device management
      • 10.1.2. Tensor memory representation
      • 10.1.3. Model Runner
    • 10.2. Low level API
      • 10.2.1. Anchor callback management
      • 10.2.2. Queue memory management
      • 10.2.3. Queue management
      • 10.2.4. Runtime management
  • 11. Model Runtime Python API
    • 11.1. High level API
      • 11.1.1. Device management
      • 11.1.2. Tensor memory representation
      • 11.1.3. Model Runner
    • 11.2. Low level API
      • 11.2.1. Anchor callback management
      • 11.2.2. Queue management
      • 11.2.3. Runtime management
  • 12. Legal notices
Next

Revision 6c23c9eb.

Read the Docs v: latest