Poplar and PopLibs
|
Structure representing the parameters of the GRU. More...
#include <Gru.hpp>
Public Attributes | |
poplar::Type | dataType |
std::size_t | batchSize |
The batch size. More... | |
std::size_t | timeSteps |
The number of time steps in the sequence of the GRU. More... | |
std::vector< std::size_t > | layerSizes |
The number of neurons for the input and output layer. More... | |
bool | outputFullSequence = true |
If true the GRU function returns the entire sequence of outputs, otherwise it returns just the final output. | |
bool | calcInputGradients = true |
If this parameter is set to false then the GRU will skip the calculation of the gradients of the inputs. | |
std::vector< BasicGruCellUnit > | cellOrder = getDefaultBasicGruCellOrder() |
The weights and biases for all of the layers being processed are concatenated in the outermost dimension of the weights and biases tensors. More... | |
bool | resetAfter = false |
Controls whether the reset gate is applied before or after the candidate weights and biases. | |
NonLinearityType | activation = NonLinearityType::TANH |
Activation function. | |
NonLinearityType | recurrentActivation = NonLinearityType::SIGMOID |
Recurrent activation function. | |
Structure representing the parameters of the GRU.
std::size_t popnn::gru::GruParams::batchSize |
The batch size.
std::vector<BasicGruCellUnit> popnn::gru::GruParams::cellOrder = getDefaultBasicGruCellOrder() |
The weights and biases for all of the layers being processed are concatenated in the outermost dimension of the weights and biases tensors.
This option allows you to specify the order of the gates in that outermost dimension. The default order can be obtained with getDefaultBasicGruCellOrder().
poplar::Type popnn::gru::GruParams::dataType |
std::vector<std::size_t> popnn::gru::GruParams::layerSizes |
The number of neurons for the input and output layer.
std::size_t popnn::gru::GruParams::timeSteps |
The number of time steps in the sequence of the GRU.