GroupNorm

#include <popnn/GroupNorm.hpp>

Group normalization operations.

namespace popnn

Functions used in neural networks.

namespace gn

Functions

std::pair<poplar::Tensor, poplar::Tensor> groupNormStatistics(poplar::Graph &graph, const poplar::Tensor acts, float eps, poplar::program::Sequence &prog, unsigned numGroups, bool unbiasedVarEstimate, bool stableAlgo = false, const poplar::Type &partialsType = poplar::FLOAT, const poplar::DebugContext &debugContext = {}, const poplar::OptionFlags &options = {})

Estimate mean and inverse of standard deviation of activations.

poplar::Tensor groupNormWhiten(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &mean, const poplar::Tensor &invStdDev, poplar::program::Sequence &prog, const poplar::DebugContext &debugContext = {}, const poplar::OptionFlags &options = {})

Whiten activations given mean and standard deviation.

std::pair<poplar::Tensor, poplar::Tensor> groupNormalise(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &gamma, const poplar::Tensor &beta, const poplar::Tensor &mean, const poplar::Tensor &invStdDev, poplar::program::Sequence &prog, const poplar::DebugContext &debugContext = {}, const poplar::OptionFlags &options = {})

Group normalise activations given mean, standard deviation and batch norm parameters.

The result is two tensors

  1. normalised activations

  2. whitened activations

std::pair<poplar::Tensor, poplar::Tensor> groupNormParamGradients(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &gradsIn, const poplar::Tensor &mean, const poplar::Tensor &iStdDev, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const poplar::DebugContext &debugContext = {}, const poplar::OptionFlags &options = {})

Compute gradients w.r.t parameters for parameter update.

std::pair<poplar::Tensor, poplar::Tensor> groupNormParamGradients(poplar::Graph &graph, const poplar::Tensor &actsWhitened, const poplar::Tensor &gradsIn, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const poplar::DebugContext &debugContext = {}, const poplar::OptionFlags &options = {})

Compute gradients w.r.t parameters for parameter update.

poplar::Tensor groupNormGradients(poplar::Graph &graph, const poplar::Tensor &acts, const poplar::Tensor &gradsIn, const poplar::Tensor &mean, const poplar::Tensor &invStdDev, const poplar::Tensor &gamma, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const poplar::DebugContext &debugContext = {}, const poplar::OptionFlags &options = {})

Compute gradients w.r.t input activations for the group norm layer.

Gradients are propagated through the complete layer including statistics computation.

poplar::Tensor groupNormGradients(poplar::Graph &graph, const poplar::Tensor &actsWhitened, const poplar::Tensor &gradsIn, const poplar::Tensor &invStdDev, const poplar::Tensor &gamma, poplar::program::Sequence &prog, const poplar::Type &partialsType = poplar::FLOAT, const poplar::DebugContext &debugContext = {}, const poplar::OptionFlags &options = {})

Compute gradients w.r.t input activations for the group norm layer.

Gradients are propagated through the complete layer including statistics computation.

void groupNormParamUpdate(poplar::Graph &graph, const poplar::Tensor &gammaDelta, const poplar::Tensor &betaDelta, float scale, poplar::Tensor &gamma, poplar::Tensor &beta, poplar::program::Sequence &prog, const poplar::DebugContext &debugContext = {}, const poplar::OptionFlags &options = {})
void groupNormParamUpdate(poplar::Graph &graph, const poplar::Tensor &gammaDelta, const poplar::Tensor &betaDelta, const poplar::Tensor &scale, poplar::Tensor &gamma, poplar::Tensor &beta, poplar::program::Sequence &prog, const poplar::DebugContext &debugContext = {}, const poplar::OptionFlags &options = {})